Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors.

Herein, we report the design and synthesis of plasmonic/non-linear optical (NLO) material core/shell nanostructures that can allow dynamic manipulation of light signals using an external electrical field and enable a new generation of nanoscale optical voltage sensors. We show that gold nanorods (Au NRs) can be synthesized with tunable plasmonic properties and function as the nucleation seeds for continued growth of a shell of NLO materials (such as polyaniline, PANI) with variable thickness. The formation of a PANI nanoshell allows dynamic modulation of the dielectric environment of the plasmonic Au NRs, and therefore the plasmonic resonance characteristics, by an external electrical field. The finite element simulation confirms that such modulation is originated from the field-induced modulation of the dielectric constant of the NLO shell. This approach is general, and the coating of the Au NRs with other NLO materials (such as barium titanate, BTO) is found to produce a similar effect. These findings can not only open a new pathway to active modulation of plasmonic resonance at the sub-wavelength scale but also enable the creation of a new generation of nanoscale optical voltage sensors (NOVS).

[1]  H. Lezec,et al.  Electrooptic modulation in thin film barium titanate plasmonic interferometers. , 2008, Nano letters.

[2]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[3]  Richard F. Haglund,et al.  Modulated optical transmission of subwavelength hole arrays in metal-VO2 films , 2006 .

[4]  A. MacDiarmid,et al.  Nonlinear optical properties of polyanilines and derivatives , 1992 .

[5]  Ya-Ping Hsieh,et al.  A graphene-based surface plasmon sensor , 2012, Nano Research.

[6]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[7]  A. Hohenau,et al.  Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices. , 2005, Journal of the American Chemical Society.

[8]  A. Hohenau,et al.  Tunable electrochemical switch of the optical properties of metallic nanoparticles. , 2008, ACS nano.

[9]  M. Bawendi,et al.  Quantum-confined stark effect in single CdSe nanocrystallite quantum dots , 1997, Science.

[10]  Wayne Dickson,et al.  Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. , 2008, Nano letters.

[11]  M. Fontana,et al.  Doping-induced conductivity transitions in molecular layers of polyaniline: optical studies of electronic state changes. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[12]  J. Ghilane,et al.  Giant plasmon resonance shift using poly(3,4-ethylenedioxythiophene) electrochemical switching. , 2010, Journal of the American Chemical Society.

[13]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[14]  Huanjun Chen,et al.  Plasmonic harvesting of light energy for Suzuki coupling reactions. , 2013, Journal of the American Chemical Society.

[15]  Huanjun Chen,et al.  Gold nanorods and their plasmonic properties. , 2013, Chemical Society reviews.

[16]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.

[17]  B. Nikoobakht,et al.  種結晶を媒介とした成長法を用いた金ナノロッド(NR)の調製と成長メカニズム , 2003 .

[18]  Harald Giessen,et al.  Nanoantenna-enhanced gas sensing in a single tailored nanofocus , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[19]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[20]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[21]  M. El-Sayed,et al.  Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. , 2005, The journal of physical chemistry. B.

[22]  R. Kaner,et al.  Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. , 2009, Accounts of chemical research.

[23]  O Ok Park,et al.  Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. , 2011, Angewandte Chemie.

[24]  Jianfang Wang,et al.  Resonance-coupling-based plasmonic switches. , 2010, Small.

[25]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[26]  Yu Huang,et al.  Plasmonic modulation of the upconversion fluorescence in NaYF4 :Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. , 2010, Angewandte Chemie.

[27]  Stephan Link,et al.  Active modulation of nanorod plasmons. , 2011, Nano letters.

[28]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[29]  P. Alsing,et al.  Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. , 2005, Nano letters.

[30]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[31]  X. Duan,et al.  Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods. , 2011, Journal of the American Chemical Society.

[32]  A. Alivisatos,et al.  Ferroelectric order in individual nanometre-scale crystals. , 2012, Nature materials.

[33]  Xiaodong Chen,et al.  Towards active plasmonic response devices , 2015, Nano Research.

[34]  Hari Singh Nalwa,et al.  Organic Materials for Third‐Order Nonlinear Optics , 1993 .

[35]  Catherine J. Murphy,et al.  Seed‐Mediated Growth Approach for Shape‐Controlled Synthesis of Spheroidal and Rod‐like Gold Nanoparticles Using a Surfactant Template , 2001 .

[36]  Shuangxi Xing,et al.  Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains , 2009 .

[37]  S. Kawata,et al.  Surface-Plasmon Holography with White-Light Illumination , 2011, Science.

[38]  X. Duan,et al.  Plasmon resonance enhanced multicolour photodetection by graphene. , 2011, Nature communications.

[39]  Jianfang Wang,et al.  (Gold Nanorod Core)/(Polyaniline Shell) Plasmonic Switches with Large Plasmon Shifts and Modulation Depths , 2014, Advanced materials.

[40]  P. Ajayan,et al.  Excitation and active control of propagating surface plasmon polaritons in graphene. , 2013, Nano letters.

[41]  Younan Xia,et al.  Gold nanocages: synthesis, properties, and applications. , 2008, Accounts of chemical research.

[42]  Shimon Weiss,et al.  Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature , 2012, ACS nano.

[43]  M. Deepa,et al.  Red to blue high electrochromic contrast and rapid switching poly(3,4-ethylenedioxypyrrole)-Au/Ag nanocomposite devices for smart windows. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  Jianfang Wang,et al.  Shape- and size-dependent refractive index sensitivity of gold nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[45]  Paul S Weiss,et al.  Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling. , 2011, Nano letters.