Feature sensitivity: A generalization of topological sensitivity

Shape and topology optimization have flourished over the last two decades, resulting in a number of powerful mathematical concepts. One such concept is that of topological sensitivity that quantifies the impact of adding infinitesimal holes (within a given continuum) on specific quantities of interest such as compliance, average stress, etc. In this paper we explore a novel generalization of topological sensitivity called feature sensitivity that captures the first-order change in quantities of interest when an arbitrary internal and boundary feature is created within an existing continuum. Specific algorithms are derived for computing the feature sensitivity of linear elasticity problems, and illustrated through numerical experiments.

[1]  T. Belytschko,et al.  Topology optimization with implicit functions and regularization , 2003 .

[2]  Timothy J. Tautges,et al.  Automatic Detail Reduction for Mesh Generation Applications , 2001, IMR.

[3]  Panos Y. Papalambros,et al.  Panos Papalambros a Survey of Structural Optimization in Mechanical Product Development , 2022 .

[4]  Gene Hou,et al.  Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations , 1999 .

[5]  M. Aliabadi,et al.  Boundary‐Element Method , 2009 .

[6]  Jan Sokolowski,et al.  Optimality Conditions for Simultaneous Topology and Shape Optimization , 2003, SIAM J. Control. Optim..

[7]  Woodrow Whitlow,et al.  CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999. Pt. 1 , 1999 .

[8]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[9]  Panos Y. Papalambros,et al.  The optimization paradigm in engineering design: promises and challenges , 2002, Comput. Aided Des..

[10]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[11]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[12]  Sang Hun Lee,et al.  A CAD-CAE integration approach using feature-based multi-resolution and multi-abstraction modelling techniques , 2005, Comput. Aided Des..

[13]  W. Ames Mathematics in Science and Engineering , 1999 .

[14]  J. L. Lions,et al.  Control of Systems Governed by Parabolic Partial Differential Equations , 1971 .

[15]  Alla Sheffer,et al.  Virtual Topology Operators for Meshing , 2000, Int. J. Comput. Geom. Appl..

[16]  J. Z. Zhu,et al.  The finite element method , 1977 .

[17]  Y. Fung,et al.  Classical and Computational Solid Mechanics , 2001 .

[18]  A Samareh Jamshid,et al.  A Survey of Shape Parameterization Techniques , 1999 .

[19]  Noboru Kikuchi,et al.  TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .

[20]  David L. Marcum,et al.  Automatic cad model processing for downstream applications , 2005 .

[21]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[22]  C. G. Armstrong,et al.  Cad-to-Cae integration through automated model simplification and adaptive modeling , 2003 .

[23]  Daniel A. Tortorelli,et al.  A systematic approach to shape sensitivity analysis , 1993 .

[24]  R. Feijóo,et al.  Topological sensitivity analysis , 2003 .

[25]  Scott A. Canann,et al.  An Object Oriented Approach to Geometry Defeaturing for Finite Element Meshing , 1998, IMR.

[26]  Clive L. Dym,et al.  Energy and Finite Element Methods In Structural Mechanics : SI Units , 2017 .

[27]  Cecil G. Armstrong,et al.  A small feature suppression/unsuppression system for preparing B-rep models for analysis , 2005, SPM '05.

[28]  Raúl A. Feijóo,et al.  THE TOPOLOGICAL DERIVATIVE FOR THE POISSON'S PROBLEM , 2003 .

[29]  David L. Marcum,et al.  Proceedings of the 16th International Meshing Roundtable , 2008 .

[30]  Krishnan Suresh,et al.  Estimating the impact of large design changes on field problems , 2007, Symposium on Solid and Physical Modeling.

[31]  Raúl A. Feijóo,et al.  Topological Sensitivity Analysis for Three-dimensional Linear Elasticity Problem , 2007 .

[32]  Kyung K. Choi,et al.  Structural Sensitivity Analysis and Optimization 1: Linear Systems , 2005 .

[33]  D. White,et al.  6th International Meshing Roundtable '97 , 1997 .

[34]  Edgardo Taroco,et al.  Topological-Shape Sensitivity Method: Theory and Applications , 2006 .

[35]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .