Wide $V_{\rm DD}$ Embedded Asynchronous SRAM With Dual-Mode Self-Timed Technique for Dynamic Voltage Systems

Voltage-dependent timing skews in precharge and sensing activities cause functional failure and reduce the speed of asynchronous static random-access memory (SRAM). Data-dependent bitline-leakage current further increases the timing skews and reduces the yield of asynchronous SRAM. A dual-mode self-timed (DMST) technique is developed for asynchronous SRAM to eliminate the timing-skew-induced failures and speed overhead across various process, voltage, and temperature conditions. The DMST technique employs a single replica column and new dummy cells to track both precharge and sensing activities in asynchronous SRAM, with bitline leakage considered. The DMST-technique simulation uses both 65-nm and 0.35-mum technologies. Several 0.35-mum DMST SRAM macros were fabricated in a test chip and embedded in a mass-produced system-on-a-chip suitable for various battery/supply-voltage configurations. Measurements demonstrated that the DMST technique can be operated continuously over a wide range of supply voltages, from 39.4% to 151.5% (or 212.1%, given device durability) of the nominal supply voltage (3.3 V). The fabricated macros also confirmed that the DMST technique is scalable for various bitline lengths and offers the same area overhead as conventional sense-tracking-only replica-column schemes.

[1]  T. Nirschl,et al.  Yield and speed optimization of a latch-type voltage sense amplifier , 2004, IEEE Journal of Solid-State Circuits.

[2]  Muhammad M. Khellah,et al.  A 6 GHz, 16 Kbytes L1 cache in a 100 nm dual-V/sub T/ technology using a bitline leakage reduction (BLR) technique , 2002, VLSIC 2002.

[3]  M. Khellah,et al.  A 6 GHz, 16 Kbytes L1 cache in a 100 nm dual-V/sub T/ technology using a bitline leakage reduction (BLR) technique , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[4]  Chua-Chin Wang,et al.  A 4-kB 500-MHz 4-T CMOS SRAM using low-VTHN bitline drivers and high-VTHP latches , 2004, IEEE Trans. Very Large Scale Integr. Syst..

[5]  R. I. Kung,et al.  Two-13 ns-64K CMOS SRAM's with very low active power and improved asynchronous circuit techniques , 1986 .

[6]  K. Yamaguchi,et al.  A 0.9-ns-access, 700-MHz SRAM macro using a configurable organization technique with an automatic timing adjuster , 1998, 1998 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.98CH36215).

[7]  Tadahiro Kuroda,et al.  A bitline leakage compensation scheme for low-voltage SRAMs , 2001, IEEE J. Solid State Circuits.

[8]  Meng-Fan Chang,et al.  SRAM cell current in low leakage design , 2006, 2006 IEEE International Workshop on Memory Technology, Design, and Testing (MTDT'06).

[9]  M. Usami,et al.  A 1.8 ns access, 550 MHz 4.5 Mb CMOS SRAM , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[10]  Bishop Brock,et al.  A 32-bit PowerPC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling , 2002, IEEE J. Solid State Circuits.

[11]  K. Ishibashi,et al.  0.4-V logic-library-friendly SRAM array using rectangular-diffusion cell and delta-boosted-array voltage scheme , 2004, IEEE Journal of Solid-State Circuits.

[12]  H. Suzuki,et al.  A 6 ns 1.5 V 4 Mb BiCMOS SRAM , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[13]  Tegze P. Haraszti CMOS Memory Circuits , 2000 .

[14]  S. Nagai,et al.  A 1 V operating 256-Kbit full CMOS SRAM , 1990, Digest of Technical Papers., 1990 Symposium on VLSI Circuits.

[15]  Bharadwaj Amrutur,et al.  A replica technique for wordline and sense control in low-power SRAM's , 1998, IEEE J. Solid State Circuits.

[16]  Jason Liu,et al.  A High-Density Subthreshold SRAM with Data-Independent Bitline Leakage and Virtual Ground Replica Scheme , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[17]  Seong-Ook Jung,et al.  Numerical Estimation of Yield in Sub-100-nm SRAM Design Using Monte Carlo Simulation , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[18]  G.A. Rincon-Mora,et al.  A low voltage, dynamic, noninverting, synchronous buck-boost converter for portable applications , 2004, IEEE Transactions on Power Electronics.

[19]  K. Ishibashi,et al.  Universal-Vdd 0.65-2.0V 32 kB cache using voltage-adapted timing-generation scheme and a lithographical-symmetric cell , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[20]  B.C. Paul,et al.  Process variation in embedded memories: failure analysis and variation aware architecture , 2005, IEEE Journal of Solid-State Circuits.

[21]  Niraj K. Jha,et al.  Joint dynamic voltage scaling and adaptive body biasing for heterogeneous distributed real-time embedded systems , 2003, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[22]  Yee William Li,et al.  High-throughput asynchronous datapath with software-controlled voltage scaling , 2004, IEEE Journal of Solid-State Circuits.

[23]  Akira Matsuzawa,et al.  A 0.5 V single power supply operated high-speed boosted and offset-grounded data storage (BOGS) SRAM cell architecture , 1997, IEEE Trans. Very Large Scale Integr. Syst..

[24]  Alain J. Martin,et al.  Asynchronous Techniques for System-on-Chip Design , 2006, Proceedings of the IEEE.

[25]  R.W. Brodersen,et al.  A dynamic voltage scaled microprocessor system , 2000, IEEE Journal of Solid-State Circuits.

[26]  K. Ishibashi,et al.  A 1 V TFT-load SRAM using a two-step word-voltage method , 1992, 1992 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[27]  Meng-Fan Chang,et al.  Supply and substrate noise tolerance using dynamic tracking clusters in configurable memory designs , 2004, International Symposium on Signals, Circuits and Systems. Proceedings, SCS 2003. (Cat. No.03EX720).

[28]  H. Morimura,et al.  A step-down boosted-wordline scheme for 1-V battery-operated fast SRAM's , 1998 .

[29]  P.A. Beerel,et al.  High performance asynchronous design using single-track full-buffer standard cells , 2006, IEEE Journal of Solid-State Circuits.

[30]  Chua-Chin Wang,et al.  A 4-kb Low-Power SRAM Design With Negative Word-Line Scheme , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Atila Alvandpour,et al.  A 4.5-GHz 130-nm 32-KB L0 cache with a leakage-tolerant self reverse-bias bitline scheme , 2003 .