Wide $V_{\rm DD}$ Embedded Asynchronous SRAM With Dual-Mode Self-Timed Technique for Dynamic Voltage Systems
暂无分享,去创建一个
[1] T. Nirschl,et al. Yield and speed optimization of a latch-type voltage sense amplifier , 2004, IEEE Journal of Solid-State Circuits.
[2] Muhammad M. Khellah,et al. A 6 GHz, 16 Kbytes L1 cache in a 100 nm dual-V/sub T/ technology using a bitline leakage reduction (BLR) technique , 2002, VLSIC 2002.
[3] M. Khellah,et al. A 6 GHz, 16 Kbytes L1 cache in a 100 nm dual-V/sub T/ technology using a bitline leakage reduction (BLR) technique , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).
[4] Chua-Chin Wang,et al. A 4-kB 500-MHz 4-T CMOS SRAM using low-VTHN bitline drivers and high-VTHP latches , 2004, IEEE Trans. Very Large Scale Integr. Syst..
[5] R. I. Kung,et al. Two-13 ns-64K CMOS SRAM's with very low active power and improved asynchronous circuit techniques , 1986 .
[6] K. Yamaguchi,et al. A 0.9-ns-access, 700-MHz SRAM macro using a configurable organization technique with an automatic timing adjuster , 1998, 1998 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.98CH36215).
[7] Tadahiro Kuroda,et al. A bitline leakage compensation scheme for low-voltage SRAMs , 2001, IEEE J. Solid State Circuits.
[8] Meng-Fan Chang,et al. SRAM cell current in low leakage design , 2006, 2006 IEEE International Workshop on Memory Technology, Design, and Testing (MTDT'06).
[9] M. Usami,et al. A 1.8 ns access, 550 MHz 4.5 Mb CMOS SRAM , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).
[10] Bishop Brock,et al. A 32-bit PowerPC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling , 2002, IEEE J. Solid State Circuits.
[11] K. Ishibashi,et al. 0.4-V logic-library-friendly SRAM array using rectangular-diffusion cell and delta-boosted-array voltage scheme , 2004, IEEE Journal of Solid-State Circuits.
[12] H. Suzuki,et al. A 6 ns 1.5 V 4 Mb BiCMOS SRAM , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.
[13] Tegze P. Haraszti. CMOS Memory Circuits , 2000 .
[14] S. Nagai,et al. A 1 V operating 256-Kbit full CMOS SRAM , 1990, Digest of Technical Papers., 1990 Symposium on VLSI Circuits.
[15] Bharadwaj Amrutur,et al. A replica technique for wordline and sense control in low-power SRAM's , 1998, IEEE J. Solid State Circuits.
[16] Jason Liu,et al. A High-Density Subthreshold SRAM with Data-Independent Bitline Leakage and Virtual Ground Replica Scheme , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.
[17] Seong-Ook Jung,et al. Numerical Estimation of Yield in Sub-100-nm SRAM Design Using Monte Carlo Simulation , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.
[18] G.A. Rincon-Mora,et al. A low voltage, dynamic, noninverting, synchronous buck-boost converter for portable applications , 2004, IEEE Transactions on Power Electronics.
[19] K. Ishibashi,et al. Universal-Vdd 0.65-2.0V 32 kB cache using voltage-adapted timing-generation scheme and a lithographical-symmetric cell , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).
[20] B.C. Paul,et al. Process variation in embedded memories: failure analysis and variation aware architecture , 2005, IEEE Journal of Solid-State Circuits.
[21] Niraj K. Jha,et al. Joint dynamic voltage scaling and adaptive body biasing for heterogeneous distributed real-time embedded systems , 2003, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[22] Yee William Li,et al. High-throughput asynchronous datapath with software-controlled voltage scaling , 2004, IEEE Journal of Solid-State Circuits.
[23] Akira Matsuzawa,et al. A 0.5 V single power supply operated high-speed boosted and offset-grounded data storage (BOGS) SRAM cell architecture , 1997, IEEE Trans. Very Large Scale Integr. Syst..
[24] Alain J. Martin,et al. Asynchronous Techniques for System-on-Chip Design , 2006, Proceedings of the IEEE.
[25] R.W. Brodersen,et al. A dynamic voltage scaled microprocessor system , 2000, IEEE Journal of Solid-State Circuits.
[26] K. Ishibashi,et al. A 1 V TFT-load SRAM using a two-step word-voltage method , 1992, 1992 IEEE International Solid-State Circuits Conference Digest of Technical Papers.
[27] Meng-Fan Chang,et al. Supply and substrate noise tolerance using dynamic tracking clusters in configurable memory designs , 2004, International Symposium on Signals, Circuits and Systems. Proceedings, SCS 2003. (Cat. No.03EX720).
[28] H. Morimura,et al. A step-down boosted-wordline scheme for 1-V battery-operated fast SRAM's , 1998 .
[29] P.A. Beerel,et al. High performance asynchronous design using single-track full-buffer standard cells , 2006, IEEE Journal of Solid-State Circuits.
[30] Chua-Chin Wang,et al. A 4-kb Low-Power SRAM Design With Negative Word-Line Scheme , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.
[31] Atila Alvandpour,et al. A 4.5-GHz 130-nm 32-KB L0 cache with a leakage-tolerant self reverse-bias bitline scheme , 2003 .