Perturbing the perturbed: Stability of quasinormal modes in presence of a positive cosmological constant

In this work, we wish to address the question -- whether the quasi-normal modes, the characteristic frequencies associated with perturbed black hole spacetimes, central to the stability of these black holes, are themselves stable. Though the differential operator governing the perturbation of black hole spacetimes is self-adjoint, the boundary conditions are dissipative in nature, so that the spectral theorem becomes inapplicable, and there is no guarantee regarding the stability of the quasi-normal modes. We have provided a general method of transforming to the hyperboloidal coordinate system, for both asymptotically flat and asymptotically de Sitter spacetimes, which neatly captures the dissipative boundary conditions, and the differential operator becomes non-self-adjoint. Employing the pseudospectrum analysis and numerically implementing the same through Chebyshev's spectral method, we present how the quasi-normal modes will drift away from their unperturbed values under external perturbation of the scattering potential. Intriguingly, for strong enough perturbation, even the fundamental quasi-normal mode drifts away from its unperturbed position for asymptotically de Sitter black holes, in stark contrast to the case of asymptotically flat black holes. This feature holds irrespective of the nature of the perturbing field and is also independent of black hole hairs. Besides presenting several other interesting results, specifically for asymptotically de Sitter black holes, we also discuss the implications of the instability of the fundamental quasi-normal mode on the strong cosmic censorship conjecture.

[1]  C. Markakis,et al.  Symmetric integration of the 1+1 Teukolsky equation on hyperboloidal foliations of Kerr spacetimes , 2023, SSRN Electronic Journal.

[2]  J. L. Jaramillo,et al.  A Weyl's law for black holes , 2022, 2212.05570.

[3]  Han Yang,et al.  Spectral stability of near-extremal spacetimes , 2022, Physical Review D.

[4]  V. Cardoso,et al.  Pseudospectrum of horizonless compact objects: A bootstrap instability mechanism , 2022, Physical Review D.

[5]  Indrani Banerjee,et al.  Hunting extra dimensions in the shadow of Sgr A* , 2022, Physical Review D.

[6]  V. Zanchin,et al.  Revisiting the quasinormal modes of the Schwarzschild black hole: Numerical analysis , 2022, The European Physical Journal C.

[7]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric , 2022, The Astrophysical Journal Letters.

[8]  A. Mazumdar,et al.  Implications of the quantum nature of the black hole horizon on the gravitational-wave ringdown , 2022, Physical Review D.

[9]  J. Mazza,et al.  Scalar perturbations around rotating regular black holes and wormholes: Quasinormal modes, ergoregion instability, and superradiance , 2022, Physical Review D.

[10]  J. Jaramillo,et al.  Energy scales and black hole pseudospectra: the structural role of the scalar product , 2021, Classical and Quantum Gravity.

[11]  E. Berti,et al.  Pseudospectrum of Reissner-Nordström black holes: Quasinormal mode instability and universality , 2021, Physical Review D.

[12]  Abhirup Ghosh,et al.  Constraining extra dimensions using observations of black hole quasi-normal modes , 2021, The European Physical Journal C.

[13]  P. Pani,et al.  Testing the Nature of Dark Compact Objects with Gravitational Waves , 2021, Handbook of Gravitational Wave Astronomy.

[14]  J. Jaramillo,et al.  Gravitational Wave Signatures of Black Hole Quasinormal Mode Instability. , 2021, Physical review letters.

[15]  A. Buonanno,et al.  Constraints on quasinormal-mode frequencies with LIGO-Virgo binary–black-hole observations , 2021, Physical Review D.

[16]  Gregorio Carullo Enhancing modified gravity detection from gravitational-wave observations using the parametrized ringdown spin expansion coeffcients formalism , 2021, Physical Review D.

[17]  C. Markakis,et al.  Discontinuous collocation methods and gravitational self-force applications , 2021, Classical and Quantum Gravity.

[18]  L. London Modeling ringdown. II. Aligned-spin binary black holes, implications for data analysis and fundamental theory , 2020 .

[19]  S. Gralla Can the EHT M87 results be used to test general relativity? , 2020, 2010.08557.

[20]  S. Chakraborty,et al.  Ergoregion instability and echoes for braneworld black holes: Scalar, electromagnetic, and gravitational perturbations , 2020, 2010.07966.

[21]  A. Mazumdar,et al.  How does a dark compact object ringdown? , 2020, Physical Review D.

[22]  C. Klein,et al.  Quantum stress tensor at the Cauchy horizon of the Reissner–Nordström–de Sitter spacetime , 2020, Physical Review D.

[23]  Y. Ashida,et al.  Non-Hermitian physics , 2020, Advances in Physics.

[24]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[25]  Rodrigo Panosso Macedo,et al.  Pseudospectrum and Black Hole Quasinormal Mode Instability , 2020, Physical Review X.

[26]  I. Vega,et al.  Bernstein spectral method for quasinormal modes and other eigenvalue problems , 2020, The European Physical Journal C.

[27]  N. Afshordi,et al.  Echoes from the braneworld black holes , 2020, 2001.01301.

[28]  Indrani Banerjee,et al.  Silhouette of M87*: A new window to peek into the world of hidden dimensions , 2019, Physical Review D.

[29]  The Event Horizon Telescope Collaboration First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[30]  C. Bambi,et al.  Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image , 2019, Physical Review D.

[31]  Sumanta Chakraborty,et al.  Constraining extra-spatial dimensions with observations of GW170817 , 2019, Classical and Quantum Gravity.

[32]  Kai Lin,et al.  The matrix method for black hole quasinormal modes , 2019, Chinese Physics C.

[33]  Gregorio Carullo,et al.  Observational black hole spectroscopy: A time-domain multimode analysis of GW150914 , 2018, Physical Review D.

[34]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[35]  J. Jaramillo,et al.  Hyperboloidal slicing approach to quasinormal mode expansions: The Reissner-Nordström case , 2018, Physical Review D.

[36]  Huan Yang,et al.  Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown , 2018, General Relativity and Gravitation.

[37]  P. Hintz,et al.  Quasinormal Modes and Strong Cosmic Censorship. , 2017, Physical review letters.

[38]  S. Vagnozzi,et al.  Brane-world extra dimensions in light of GW170817 , 2017, 1711.06628.

[39]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[40]  Aron Jansen Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes , 2017, The European Physical Journal Plus.

[41]  C. V. Vishveshwara On the black hole trail ... , 2017 .

[42]  N. Afshordi,et al.  Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons , 2016, 1612.00266.

[43]  C. Palenzuela,et al.  Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale , 2016, 1608.08637.

[44]  S. Chakraborty Boundary terms of the Einstein-Hilbert action , 2016, 1607.05986.

[45]  V. Cardoso,et al.  Testing the black hole ‘no-hair’ hypothesis , 2016, 1607.03133.

[46]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[47]  Vitor Cardoso,et al.  Is the Gravitational-Wave Ringdown a Probe of the Event Horizon? , 2016, Physical review letters.

[48]  T. Padmanabhan,et al.  Variational principle for gravity with null and non-null boundaries: a unified boundary counter-term , 2016, 1602.07546.

[49]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[50]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[51]  Ó. J. Dias,et al.  Numerical methods for finding stationary gravitational solutions , 2015, 1510.02804.

[52]  Marco O. P. Sampaio,et al.  Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.

[53]  T. Padmanabhan,et al.  A boundary term for the gravitational action with null boundaries , 2015, 1501.01053.

[54]  D. Shoemaker,et al.  Modeling ringdown: Beyond the fundamental quasinormal modes , 2014, 1404.3197.

[55]  D. Krejčiřík,et al.  Pseudospectra in non-Hermitian quantum mechanics , 2014, 1402.1082.

[56]  Anil Zenginoglu,et al.  A geometric framework for black hole perturbations , 2011 .

[57]  A. Cornell,et al.  Black hole quasinormal modes using the asymptotic iteration method , 2009, 0912.2740.

[58]  Vitor Cardoso,et al.  Quasinormal modes of black holes and black branes , 2009, 0905.2975.

[59]  V. Cardoso,et al.  Quasinormal modes of the near extremal Schwarzschild-de Sitter black hole , 2003, gr-qc/0301078.

[60]  Lloyd N. Trefethen,et al.  Large-Scale Computation of Pseudospectra Using ARPACK and Eigs , 2001, SIAM J. Sci. Comput..

[61]  Lloyd N. Trefethen,et al.  Computation of pseudospectra , 1999, Acta Numerica.

[62]  R. Price,et al.  Quantifying excitations of quasinormal mode systems , 1998, gr-qc/9810074.

[63]  P. T. Leung,et al.  Quasinormal-mode expansion for waves in open systems , 1998 .

[64]  T. Driscoll,et al.  Pseudospectra for the wave equation with an absorbing boundary , 1996 .

[65]  Nollert About the significance of quasinormal modes of black holes. , 1996, Physical review. D, Particles and fields.

[66]  J. M. Aguirregabiria,et al.  Scattering by black holes: A Simulated potential approach , 1996 .

[67]  S. Axler Linear Algebra Done Right , 1995, Undergraduate Texts in Mathematics.

[68]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[69]  UvA-DARE ( , 2022 .

[70]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon , 2021, The Astrophysical Journal Letters.

[71]  Jeff Hecht,et al.  Event horizon , 2011, Nature.

[72]  The VIRGO Collaboration , 2010 .

[73]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[74]  C. V. Vishveshwara ON THE BLACK HOLE TRAIL...: A PERSONAL JOURNEY , 1996 .