Fronto-Temporal Coupling Dynamics During Spontaneous Activity and Auditory Processing in the Bat Carollia perspicillata

Most mammals rely on the extraction of acoustic information from the environment in order to survive. However, the mechanisms that support sound representation in auditory neural networks involving sensory and association brain areas remain underexplored. In this study, we address the functional connectivity between an auditory region in frontal cortex (the frontal auditory field, FAF) and the auditory cortex (AC) in the bat Carollia perspicillata. The AC is a classic sensory area central for the processing of acoustic information. On the other hand, the FAF belongs to the frontal lobe, a brain region involved in the integration of sensory inputs, modulation of cognitive states, and in the coordination of behavioural outputs. The FAF-AC network was examined in terms of oscillatory coherence (local-field potentials, LFPs), and within an information theoretical framework linking FAF and AC spiking activity. We show that in the absence of acoustic stimulation, simultaneously recorded LFPs from FAF and AC are coherent in low frequencies (1-12 Hz). This “default” coupling was strongest in deep AC layers and was unaltered by acoustic stimulation. However, presenting auditory stimuli did trigger the emergence of coherent auditory-evoked gamma-band activity (>25 Hz) between the FAF and AC. In terms of spiking, our results suggest that FAF and AC engage in distinct coding strategies for representing artificial and natural sounds. Taken together, our findings shed light onto the neuronal coding strategies and functional coupling mechanisms that enable sound representation at the network level in the mammalian brain.

[1]  J. Gallinat,et al.  Reduced auditory evoked gamma-band response and schizophrenia-like clinical symptoms under subanesthetic ketamine , 2019, Neuropsychopharmacology.

[2]  A. King,et al.  Encoding of virtual acoustic space stimuli by neurons in ferret primary auditory cortex. , 2005, Journal of neurophysiology.

[3]  David Poeppel,et al.  Concurrent temporal channels for auditory processing: Oscillatory neural entrainment reveals segregation of function at different scales , 2017, PLoS biology.

[4]  Supratim Ray,et al.  Large Visual Stimuli Induce Two Distinct Gamma Oscillations in Primate Visual Cortex , 2018, The Journal of Neuroscience.

[5]  C. Carter,et al.  Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Kanwal,et al.  Auditory responses from the frontal cortex in the mustached bat, Pteronotus parnellii , 2000, Neuroreport.

[7]  R. Knight,et al.  Hierarchy of prediction errors for auditory events in human temporal and frontal cortex , 2016, Proceedings of the National Academy of Sciences.

[8]  Jiping Zhang,et al.  Encoding of sound envelope transients in the auditory cortex of juvenile rats and adult rats , 2016, International Journal of Developmental Neuroscience.

[9]  Israel Nelken,et al.  Local versus global scales of organization in auditory cortex , 2014, Trends in Neurosciences.

[10]  Julio C. Hechavarría,et al.  Blurry topography for precise target-distance computations in the auditory cortex of echolocating bats , 2013, Nature Communications.

[11]  Lizabeth M Romanski,et al.  Representation and integration of auditory and visual stimuli in the primate ventral lateral prefrontal cortex. , 2007, Cerebral cortex.

[12]  Pierre Yger,et al.  A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo , 2018, eLife.

[13]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[14]  M. Jung,et al.  Behavioral Neuroscience , 2022 .

[15]  Jagmeet S. Kanwal,et al.  Communication call-evoked gamma-band activity in the auditory cortex of awake bats is modified by complex acoustic features , 2008, Brain Research.

[16]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[17]  Stefano Panzeri,et al.  Distinct timescales of population coding across cortex , 2017, Nature.

[18]  T. Bast,et al.  Too Little and Too Much: Hypoactivation and Disinhibition of Medial Prefrontal Cortex Cause Attentional Deficits , 2014, The Journal of Neuroscience.

[19]  J. Gordon,et al.  Higher-Order Sensory Cortex Drives Basolateral Amygdala Activity during the Recall of Remote, but Not Recently Learned Fearful Memories , 2016, The Journal of Neuroscience.

[20]  M. Jerome Beetz,et al.  Cortical neurons of bats respond best to echoes from nearest targets when listening to natural biosonar multi-echo streams , 2016, Scientific Reports.

[21]  Marc Schönwiesner,et al.  The Encoding of Sound Source Elevation in the Human Auditory Cortex , 2018, The Journal of Neuroscience.

[22]  D Hermes,et al.  Stimulus Dependence of Gamma Oscillations in Human Visual Cortex. , 2015, Cerebral cortex.

[23]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[24]  Stefano Panzeri,et al.  Analysis of Slow (Theta) Oscillations as a Potential Temporal Reference Frame for Information Coding in Sensory Cortices , 2012, PLoS Comput. Biol..

[25]  M. Wiest,et al.  Deviance detection by a P3-like response in rat posterior parietal cortex , 2013, Front. Integr. Neurosci..

[26]  J. Kobler,et al.  Auditory pathways to the frontal cortex of the mustache bat, Pteronotus parnellii. , 1987, Science.

[27]  J. Ostwald,et al.  Temporal Coding of Amplitude and Frequency Modulation in the Rat Auditory Cortex , 1995, The European journal of neuroscience.

[28]  K. Harris,et al.  Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex , 2009, Neuron.

[29]  Marianne Amalric,et al.  Excitotoxic lesions of the prelimbic‐infralimbic areas of the rodent prefrontal cortex disrupt motor preparatory processes , 2003, The European journal of neuroscience.

[30]  JaneR . Taylor,et al.  The orbitofrontal cortex regulates outcome‐based decision‐making via the lateral striatum , 2013, The European journal of neuroscience.

[31]  Julio C. Hechavarría,et al.  Processing of temporally patterned sounds in the auditory cortex of Seba's short‐tailed bat,Carollia perspicillata , 2017, The European journal of neuroscience.

[32]  M. Hallett,et al.  Identifying true brain interaction from EEG data using the imaginary part of coherency , 2004, Clinical Neurophysiology.

[33]  David Poeppel,et al.  Cortical oscillations and speech processing: emerging computational principles and operations , 2012, Nature Neuroscience.

[34]  Luc H. Arnal,et al.  Cortical oscillations and sensory predictions , 2012, Trends in Cognitive Sciences.

[35]  H. Barbas,et al.  Specialized prefrontal “auditory fields”: organization of primate prefrontal-temporal pathways , 2014, Front. Neurosci..

[36]  Partha P. Mitra,et al.  Chronux: A platform for analyzing neural signals , 2010, Journal of Neuroscience Methods.

[37]  R. Knight,et al.  Oscillatory Dynamics of Prefrontal Cognitive Control , 2016, Trends in Cognitive Sciences.

[38]  J. Edeline,et al.  How do auditory cortex neurons represent communication sounds? , 2013, Hearing Research.

[39]  Eric D Young,et al.  First-spike latency information in single neurons increases when referenced to population onset , 2007, Proceedings of the National Academy of Sciences.

[40]  Julio C. Hechavarría,et al.  Low-Frequency Spike-Field Coherence Is a Fingerprint of Periodicity Coding in the Auditory Cortex , 2018, iScience.

[41]  Xiaoqin Wang,et al.  Temporal and rate representations of time-varying signals in the auditory cortex of awake primates , 2001, Nature Neuroscience.

[42]  Catherine O. Fritz,et al.  "Effect size estimates: Current use, calculations, and interpretation": Correction to Fritz et al. (2011). , 2012 .

[43]  John P Welsh,et al.  Gamma oscillations in the auditory cortex of awake rats , 2011, The European journal of neuroscience.

[44]  C. Carter,et al.  Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia , 2006, Proceedings of the National Academy of Sciences.

[45]  Petr Lánský,et al.  A review of the methods for neuronal response latency estimation , 2015, Biosyst..

[46]  Guillermo V Carbajal,et al.  The Neuronal Basis of Predictive Coding Along the Auditory Pathway: From the Subcortical Roots to Cortical Deviance Detection , 2018, Trends in hearing.

[47]  Julio C. Hechavarría,et al.  Distress vocalization sequences broadcasted by bats carry redundant information , 2016, Journal of Comparative Physiology A.

[48]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[49]  P. Goldman-Rakic,et al.  An auditory domain in primate prefrontal cortex , 2002, Nature Neuroscience.

[50]  Timothée Masquelier,et al.  Neural variability, or lack thereof , 2013, Front. Comput. Neurosci..

[51]  Robert T Knight,et al.  Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception , 2017, Proceedings of the National Academy of Sciences.

[52]  Daniel Gembris,et al.  Top-down attentional processing enhances auditory evoked gamma band activity , 2003, Neuroreport.

[53]  Stefano Panzeri,et al.  Correcting for the sampling bias problem in spike train information measures. , 2007, Journal of neurophysiology.

[54]  Nikos K Logothetis,et al.  A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings , 2009, BMC Neuroscience.

[55]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[56]  B. Sacchetti,et al.  The auditory cortex and the emotional valence of sounds , 2019, Neuroscience & Biobehavioral Reviews.

[57]  A Malanda,et al.  Gamma band responses to target and non-target auditory stimuli in humans , 2004, Neuroscience Letters.

[58]  J. Newman,et al.  Single unit analysis of auditory processing in squirrel monkey frontal cortex , 1976, Experimental Brain Research.

[59]  S. Floresco,et al.  Amygdala-prefrontal cortical circuitry regulates effort-based decision making. , 2006, Cerebral cortex.

[60]  Diego Elgueda,et al.  Laminar profile of task-related plasticity in ferret primary auditory cortex , 2018, Scientific Reports.

[61]  Michael Wehr,et al.  A Coding Transformation for Temporally Structured Sounds within Auditory Cortical Neurons , 2015, Neuron.

[62]  S. Floresco,et al.  Dissociable Contributions by Prefrontal D1 and D2 Receptors to Risk-Based Decision Making , 2011, The Journal of Neuroscience.

[63]  K. Esser,et al.  Tonotopic organization and parcellation of auditory cortex in the FM‐bat Carollia perspicillata , 1999, The European journal of neuroscience.

[64]  Shaoqun Zeng,et al.  Primary Auditory Cortex is Required for Anticipatory Motor Response , 2017, Cerebral cortex.

[65]  N. Balderston,et al.  Prefrontal cortical regulation of fear learning , 2014, Trends in Neurosciences.

[66]  J. Kobler,et al.  Central acoustic tract in an echolocating bat: An extralemniscal auditory pathway to the thalamus , 1989, The Journal of comparative neurology.

[67]  Denise M Werchan,et al.  Role of Prefrontal Cortex in Learning and Generalizing Hierarchical Rules in 8-Month-Old Infants , 2016, The Journal of Neuroscience.

[68]  Andreas K Engel,et al.  Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory , 2017, The Journal of Neuroscience.

[69]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[70]  Julio C. Hechavarría,et al.  Modified synaptic dynamics predict neural activity patterns in an auditory field within the frontal cortex , 2020, The European journal of neuroscience.

[71]  Julio C. Hechavarría,et al.  Neuronal coding of multiscale temporal features in communication sequences within the bat auditory cortex , 2018, Communications Biology.

[72]  Chris C. Rodgers,et al.  Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons , 2019, eLife.

[73]  Jan-Mathijs Schoffelen,et al.  A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls , 2016, Front. Syst. Neurosci..

[75]  Pingbo Yin,et al.  Orbitofrontal Cortex Neurons Respond to Sound and Activate Primary Auditory Cortex Neurons , 2018, Cerebral cortex.

[76]  K. Deisseroth,et al.  Prefrontal Parvalbumin Neurons in Control of Attention , 2016, Cell.

[77]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[78]  Julio C. Hechavarría,et al.  Vocal sequences suppress spiking in the bat auditory cortex while evoking concomitant steady-state local field potentials , 2016, Scientific Reports.

[79]  Richard E. Turner,et al.  STRFs in primary auditory cortex emerge from masking-based statistics of natural sounds , 2019, PLoS Comput. Biol..

[80]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[81]  N. B. Skachkov,et al.  On the application of , 2002 .

[82]  N. Logothetis,et al.  Millisecond encoding precision of auditory cortex neurons , 2010, Proceedings of the National Academy of Sciences.

[83]  Marcelo A. Montemurro,et al.  Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns , 2009, Neuron.

[84]  K. Esser,et al.  Auditory responses from the frontal cortex in the short‐tailed fruit bat Carollia perspicillata , 2000, Neuroreport.

[85]  Daniela Popa,et al.  Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep , 2010, Proceedings of the National Academy of Sciences.

[86]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[87]  T. Womelsdorf,et al.  Long-Range Attention Networks: Circuit Motifs Underlying Endogenously Controlled Stimulus Selection , 2015, Trends in Neurosciences.

[88]  N. Suga,et al.  Neural axis representing target range in the auditory cortex of the mustache bat. , 1979, Science.

[89]  Carles Escera,et al.  Neurons along the auditory pathway exhibit a hierarchical organization of prediction error , 2017, Nature Communications.

[90]  Robert T. Knight,et al.  Direct evidence for prediction signals in frontal cortex independent of prediction error , 2018, bioRxiv.

[91]  Hans-Jochen Heinze,et al.  Direct Evidence for Prediction Signals in Frontal Cortex Independent of Prediction Error. , 2018, Cerebral cortex.

[92]  Shihab A Shamma,et al.  Frontal Cortex Activation Causes Rapid Plasticity of Auditory Cortical Processing , 2013, The Journal of Neuroscience.

[93]  W. Bosking,et al.  Functionally Distinct Gamma Range Activity Revealed by Stimulus Tuning in Human Visual Cortex , 2019, Current Biology.

[94]  G H Recanzone,et al.  Spatial processing in the auditory cortex of the macaque monkey. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Jeffrey S. Johnson,et al.  Coding of amplitude modulation in primary auditory cortex. , 2011, Journal of neurophysiology.

[96]  Pierre Yger,et al.  Author response: A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo , 2018 .

[97]  E. Miller,et al.  THE PREFRONTAL CORTEX AND COGNITIVE CONTROL , 2000 .

[98]  Julio C. Hechavarría,et al.  Laminar specificity of oscillatory coherence in the auditory cortex , 2019, Brain Structure and Function.

[99]  Alessandro Altoè,et al.  Integrated processing of spatial cues in human auditory cortex , 2015, Hearing Research.

[100]  Gregor Leicht,et al.  Auditory cortex and anterior cingulate cortex sources of the early evoked gamma-band response: Relationship to task difficulty and mental effort , 2007, Neuropsychologia.

[101]  H. Scheich,et al.  Auditory Cortex Stimulus-Related Gamma Oscillations in Primate , 2002 .

[102]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[103]  Jennifer J. Richler,et al.  Effect size estimates: current use, calculations, and interpretation. , 2012, Journal of experimental psychology. General.

[104]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[105]  Christopher K. Kovach,et al.  Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex , 2017, PLoS biology.

[106]  W Bialek,et al.  On the application of information theory to neural spike trains. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[107]  N. Logothetis,et al.  Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex , 2008, Current Biology.

[108]  James K. Kroger,et al.  Cross-modal and cross-temporal association in neurons of frontal cortex , 2000, Nature.

[109]  Anton Sirota,et al.  4 Hz oscillations synchronize prefrontal-amygdala circuits during fear behaviour , 2016, Nature Neuroscience.

[110]  Herbert Peremans,et al.  Echo-acoustic flow dynamically modifies the cortical map of target range in bats , 2014, Nature Communications.

[111]  P. Fries Rhythms for Cognition: Communication through Coherence , 2015, Neuron.

[112]  A. Engel,et al.  Generators and Connectivity of the Early Auditory Evoked Gamma Band Response , 2015, Brain Topography.

[113]  Lizabeth M. Romanski,et al.  Auditory connections and functions of prefrontal cortex , 2014, Front. Neurosci..

[114]  L. Romanski,et al.  Prefrontal Neuronal Responses during Audiovisual Mnemonic Processing , 2015, The Journal of Neuroscience.

[115]  Andreas Nieder,et al.  Audio-Vocal Interaction in Single Neurons of the Monkey Ventrolateral Prefrontal Cortex , 2015, The Journal of Neuroscience.

[116]  Alexandre Hyafil,et al.  Speech encoding by coupled cortical theta and gamma oscillations , 2015, eLife.

[117]  H. Scheich,et al.  Stimulus-related gamma oscillations in primate auditory cortex. , 2002, Journal of neurophysiology.

[118]  Valerie Kirsch,et al.  Reduced Early Auditory Evoked Gamma-Band Response in Patients with Schizophrenia , 2010, Biological Psychiatry.

[119]  Robin A. A. Ince,et al.  Frontal Top-Down Signals Increase Coupling of Auditory Low-Frequency Oscillations to Continuous Speech in Human Listeners , 2015, Current Biology.

[120]  Karl J. Friston,et al.  Does predictive coding have a future? , 2018, Nature Neuroscience.