Efficient stochastic Galerkin methods for random diffusion equations

We discuss in this paper efficient solvers for stochastic diffusion equations in random media. We employ generalized polynomial chaos (gPC) expansion to express the solution in a convergent series and obtain a set of deterministic equations for the expansion coefficients by Galerkin projection. Although the resulting system of diffusion equations are coupled, we show that one can construct fast numerical methods to solve them in a decoupled fashion. The methods are based on separation of the diagonal terms and off-diagonal terms in the matrix of the Galerkin system. We examine properties of this matrix and show that the proposed method is unconditionally stable for unsteady problems and convergent for steady problems with a convergent rate independent of discretization parameters. Numerical examples are provided, for both steady and unsteady random diffusions, to support the analysis.

[1]  R. Ghanem Stochastic Finite Elements For Heterogeneous Media with Multiple Random Non-Gaussian Properties , 1997 .

[2]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[3]  G. Szegő Polynomials orthogonal on the unit circle , 1939 .

[4]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[5]  Roger Ghanem,et al.  Stochastic Finite Elements with Multiple Random Non-Gaussian Properties , 1999 .

[6]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[7]  Menner A. Tatang,et al.  An efficient method for parametric uncertainty analysis of numerical geophysical models , 1997 .

[8]  R. Ghanem,et al.  Stochastic Finite Element Expansion for Random Media , 1989 .

[9]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[10]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[11]  N. Wiener The Homogeneous Chaos , 1938 .

[12]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[13]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[14]  Roger Ghanem,et al.  Scales of fluctuation and the propagation of uncertainty in random porous media , 1998 .

[15]  N. Zabaras,et al.  Uncertainty propagation in finite deformations––A spectral stochastic Lagrangian approach , 2006 .

[16]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[17]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[18]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[19]  D. Xiu,et al.  A new stochastic approach to transient heat conduction modeling with uncertainty , 2003 .

[20]  Christoph Schwab,et al.  Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.

[21]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[22]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[23]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[24]  M. Loève,et al.  Elementary Probability Theory , 1977 .

[25]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[26]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[27]  Dongbin Xiu,et al.  Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network , 2007, J. Comput. Phys..

[28]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[29]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[30]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .