Multiple systemic transplantations of human amniotic mesenchymal stem cells exert therapeutic effects in an ALS mouse model

[1]  M. Chopp,et al.  Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer's disease model , 2013, Neurobiology of Aging.

[2]  S. Appel,et al.  Immune-mediated Mechanisms in the Pathoprogression of Amyotrophic Lateral Sclerosis , 2013, Journal of Neuroimmune Pharmacology.

[3]  S. H. Kim,et al.  Neural Induction with Neurogenin 1 Enhances the Therapeutic Potential of Mesenchymal Stem Cells in an Amyotrophic Lateral Sclerosis Mouse Model , 2013, Cell transplantation.

[4]  Eva L. Feldman,et al.  Translational stem cell therapy for amyotrophic lateral sclerosis , 2012, Nature Reviews Neurology.

[5]  S. Kang,et al.  Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells , 2012, Journal of veterinary science.

[6]  P. Sanberg,et al.  Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS , 2012, PloS one.

[7]  Aneurin J. Kennerley,et al.  Optimised and Rapid Pre-clinical Screening in the SOD1G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis (ALS) , 2011, PloS one.

[8]  J. Glass,et al.  Stem cell technology for the study and treatment of motor neuron diseases. , 2011, Regenerative medicine.

[9]  C. Cicione,et al.  Human amniotic membrane as an alternative source of stem cells for regenerative medicine. , 2011, Differentiation; research in biological diversity.

[10]  W. Robberecht,et al.  Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease , 2011, The Lancet Neurology.

[11]  S. Salani,et al.  Systemic transplantation of c-kit+ cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis. , 2010, Human molecular genetics.

[12]  N. Ticozzi,et al.  Stem cells in amyotrophic lateral sclerosis: motor neuron protection or replacement? , 2010, CNS & neurological disorders drug targets.

[13]  C. Tseng,et al.  Isolation of Mesenchymal Stem Cells with Neurogenic Potential from the Mesoderm of the Amniotic Membrane , 2010, Cells Tissues Organs.

[14]  R. Portmann,et al.  Turning placenta into brain: placental mesenchymal stem cells differentiate into neurons and oligodendrocytes. , 2010, American journal of obstetrics and gynecology.

[15]  G. Rouleau,et al.  Genetics of motor neuron disorders: new insights into pathogenic mechanisms , 2009, Nature Reviews Genetics.

[16]  Jason R. Thonhoff,et al.  Stem cell-derived motor neurons: applications and challenges in amyotrophic lateral sclerosis. , 2009, Current stem cell research & therapy.

[17]  E. Feldman,et al.  Stem cells: comprehensive treatments for amyotrophic lateral sclerosis in conjunction with growth factor delivery , 2009, Growth factors.

[18]  J. Rothstein,et al.  Focal Transplantation-based Astrocyte Replacement is Neuroprotective in a Model of Motor Neuron Disease , 2008, Nature Neuroscience.

[19]  A. Vercelli,et al.  Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis , 2008, Neurobiology of Disease.

[20]  R. Zimmermann,et al.  Comparative Characterization of Cultured Human Term Amnion Epithelial and Mesenchymal Stromal Cells for Application in Cell Therapy , 2008, Cell transplantation.

[21]  R. Deane,et al.  ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration , 2008, Nature Neuroscience.

[22]  L. Mazzini,et al.  Stem cell treatment in Amyotrophic Lateral Sclerosis , 2008, Journal of the Neurological Sciences.

[23]  Toshio Miki,et al.  Concise Review: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First International Workshop on Placenta Derived Stem Cells , 2008, Stem cells.

[24]  M. Pera,et al.  Stem Cells Derived from Human Fetal Membranes Display Multilineage Differentiation Potential , 2007, Biology of reproduction.

[25]  M. van Griensven,et al.  Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. , 2007, Tissue engineering.

[26]  Anthony Atala,et al.  Isolation of amniotic stem cell lines with potential for therapy , 2007, Nature Biotechnology.

[27]  M. Yen,et al.  Placenta‐Derived Multipotent Cells Exhibit Immunosuppressive Properties That Are Enhanced in the Presence of Interferon‐γ , 2006, Stem cells.

[28]  S. Mckercher,et al.  Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis , 2006, Proceedings of the National Academy of Sciences.

[29]  D. Cleveland,et al.  ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors , 2006, Neuron.

[30]  G. Kollias,et al.  Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia , 2006, Science.

[31]  C. Bungener,et al.  Psychopathology in amyotrophic lateral sclerosis: A preliminary study with 27 ALS patients , 2005, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[32]  F. Claas,et al.  Isolation of Mesenchymal Stem Cells of Fetal or Maternal Origin from Human Placenta , 2004, Stem cells.

[33]  C. Donadoni,et al.  Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. , 2004, Brain : a journal of neurology.

[34]  O. Lindvall,et al.  Stem cell therapy for human neurodegenerative disorders–how to make it work , 2004, Nature Medicine.

[35]  T. Siddique,et al.  Presence of dendritic cells, MCP‐1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue , 2004, Annals of neurology.

[36]  P. Sanberg,et al.  Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. , 2003, Journal of hematotherapy & stem cell research.

[37]  Michel Kliot,et al.  Assessing disease onset and progression in the SOD1 mouse model of ALS , 2003, Neuroreport.

[38]  P. Mcgeer,et al.  Inflammatory processes in amyotrophic lateral sclerosis , 2002, Muscle & nerve.

[39]  J. Elliott Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. , 2001, Brain research. Molecular brain research.

[40]  M. Gurney,et al.  Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS , 1998 .

[41]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[42]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[43]  J. Moraleda,et al.  The amniotic membrane as a source of stem cells. , 2010, Histology and histopathology.

[44]  C. Zhang,et al.  Multiple administrations of human marrow stromal cells through cerebrospinal fluid prolong survival in a transgenic mouse model of amyotrophic lateral sclerosis. , 2009, Cytotherapy.

[45]  Chang Zhou,et al.  Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. , 2007, Cytotherapy.

[46]  M. Gurney,et al.  Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. , 1998, Glia.