On General Plane Fronted Waves. Geodesics

AbstractA general class of Lorentzian metrics, $$\mathcal{M}_0 \times \mathbb{R}^2 $$ , $$\langle \cdot ,\; \cdot \rangle _z = \langle \cdot ,\; \cdot \rangle _x + 2\;\;du\;\;dv + H(x,u)\;du^2 $$ , with $$(\mathcal{M}_0 ,\;\langle \cdot ,\; \cdot \rangle _x )$$ any Riemannian manifold, is introduced in order to generalize classical exact plane fronted waves. Here, we start a systematic study of their main geodesic properties: geodesic completeness, geodesic connectedness and multiplicity causal character of connecting geodesics. These results are independent of the possibility of a full integration of geodesic equations. Variational and geometrical techniques are applied systematically. In particular, we prove that the asymptotic behavior of H(x,u) with x at infinity determines many properties of geodesics. Essentially, a subquadratic growth of H ensures geodesic completeness and connectedness, while the critical situation appears when H(x,u) behaves in some direction as $$|{\kern 1pt} x{\kern 1pt} |^2 $$ , as in the classical model of exact gravitational waves.

[1]  On the completeness of Hamiltonian vector fields , 1970 .

[2]  Roger Penrose,et al.  A Remarkable Property of Plane Waves in General Relativity , 1965 .

[3]  W. Press,et al.  Gravitational waves. , 1980, Science.

[4]  A. Masiello Variational methods in Lorentzian geometry , 1994 .

[5]  J. Marsden,et al.  A comparison theorem for Hamiltonian vector fields , 1970 .

[6]  E. Fadell,et al.  Category of loop spaces of open subsets in Euclidean space , 1991 .

[7]  H. W. Brinkmann Einstein spaces which are mapped conformally on each other , 1925 .

[8]  Causality and conjugate points in general plane waves , 2002, gr-qc/0211086.

[9]  B. O'neill Semi-Riemannian Geometry With Applications to Relativity , 1983 .

[10]  M. Zareyan A Quasi-Spherical Gravitational Wave Solution in Kaluza-Klein Theory , 1996, gr-qc/9606015.

[11]  R. Palais Lusternik-Schnirelman theory on Banach manifolds , 1966 .

[12]  D. Ebin Completeness of Hamiltonian vector fields , 1970 .

[13]  J. Griffiths On the propagation of a gravitational wave in a stiff perfect fluid , 1992 .

[14]  P. A. Hogan A spherical gravitational wave in the de Sitter universe , 1992 .

[15]  V. Benci,et al.  On the existence of multiple geodesics in static space-times , 1991 .

[16]  John K. Beem,et al.  Global Lorentzian Geometry , 1981 .

[17]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[18]  A. Avez Essais de géométrie riemannienne hyperbolique globale. Applications à la relativité générale , 1963 .

[19]  H. Seifert Global Connectivity by Timelike Geodesics , 1967 .

[20]  What is a Differential Equation , 1986 .

[21]  J. Flores,et al.  A Quadratic Bolza—Type Problem in a Riemannian Manifold , 2003 .

[22]  Miguel Sánchez Caja Structure of Lorentzian tori with a killing vector field , 1997 .

[23]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[24]  Y. Ezawa,et al.  Effects of topology on the gravitational wave , 1994 .

[25]  Jerrold E. Marsden,et al.  Foundations of Mechanics: 2nd Edition , 1980 .

[26]  A. Romero,et al.  New properties and examples of incomplete Lorentzian tori , 1994 .

[27]  W. Bonnor,et al.  The gravitational wave rocket , 1997 .