Network-Level Travel Time Prediction Considering the Effects of Weather and Seasonality

[1]  Xuejian Kang,et al.  Method of Evaluating and Predicting Traffic State of Highway Network Based on Deep Learning , 2021 .

[2]  Jiannong Cao,et al.  Exploring traffic congestion correlation from multiple data sources , 2017, Pervasive Mob. Comput..

[3]  Jiaqiu Wang,et al.  A space-time delay neural network model for travel time prediction , 2016, Eng. Appl. Artif. Intell..

[4]  Alípio Mário Jorge,et al.  Improving the accuracy of long-term travel time prediction using heterogeneous ensembles , 2015, Neurocomputing.

[5]  Hwasoo Yeo,et al.  Short-term Travel-time Prediction on Highway: A Review of the Data-driven Approach , 2015 .

[6]  Wei Fan,et al.  Artificial neural network travel time prediction model for buses using only GPS data , 2014 .

[7]  Alípio Mário Jorge,et al.  Comparing state-of-the-art regression methods for long term travel time prediction , 2012, Intell. Data Anal..

[8]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[9]  Romain Billot,et al.  Motorway travel time prediction based on toll data and weather effect integration , 2010 .

[10]  A. Schäfer REGULARITIES IN TRAVEL DEMAND: AN INTERNATIONAL PERSPECTIVE , 2000 .

[11]  Andreas Schäfer,et al.  The global demand for motorized mobility , 1998 .

[12]  Andreas Schäfer,et al.  The past and future of global mobility , 1997 .

[13]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[14]  Peter J. Bickel,et al.  Day-to-Day Travel-Time Trends and Travel-Time Prediction from Loop-Detector Data , 2000 .