Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation
暂无分享,去创建一个
Cheng Wang | Steven M. Wise | Peng Zhou | John S. Lowengrub | Zhengzheng Hu | Arvind Baskaran | Cheng Wang | J. Lowengrub | S. Wise | Zhengzheng Hu | A. Baskaran | P. Zhou
[1] Pedro Tarazona,et al. Dynamic density functional theory of fluids , 1999 .
[2] Badrinarayan P. Athreya,et al. Using the phase-field crystal method in the multi-scale modeling of microstructure evolution , 2007 .
[3] Steven M. Wise,et al. An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal Equation , 2011, SIAM J. Numer. Anal..
[4] David J. Eyre,et al. Systems of Cahn-Hilliard Equations , 1993, SIAM J. Appl. Math..
[5] Cheng Wang,et al. An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..
[6] Steven M. Wise,et al. Global Smooth Solutions of the Three-dimensional Modified Phase Field Crystal Equation , 2010 .
[7] N. Provatas,et al. Phase-field crystals with elastic interactions. , 2006, Physical review letters.
[8] James A. Warren,et al. An efficient algorithm for solving the phase field crystal model , 2008, J. Comput. Phys..
[9] Nikolas Provatas,et al. Phase field crystal study of deformation and plasticity in nanocrystalline materials. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] Cheng Wang,et al. A Linear Energy Stable Scheme for a Thin Film Model Without Slope Selection , 2012, J. Sci. Comput..
[11] Jie Shen,et al. Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..
[12] Zhonghua Qiao,et al. An Adaptive Time-Stepping Strategy for the Cahn-Hilliard Equation , 2012 .
[13] Martin Grant,et al. Modeling elasticity in crystal growth. , 2001, Physical review letters.
[14] Alain Karma,et al. Phase-field crystal study of grain-boundary premelting , 2008, 0807.5083.
[15] J. Lowengrub,et al. Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .
[16] Peter Smereka,et al. Kinetic Monte Carlo simulation of strained heteroepitaxial growth with intermixing , 2009, 0903.4882.
[17] Cheng Wang,et al. Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..
[18] Axel Voigt,et al. Nucleation and growth by a phase field crystal (PFC) model , 2007 .
[19] Peter Galenko,et al. Unconditionally gradient-stable computational schemes in problems of fast phase transitions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] D. J. Eyre. Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .
[21] Tao Tang,et al. Stability Analysis of Large Time-Stepping Methods for Epitaxial Growth Models , 2006, SIAM J. Numer. Anal..
[22] Xiaofeng Yang,et al. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .
[23] M. Grant,et al. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] S. M. Wise,et al. Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..
[25] R. Nicolaides,et al. Numerical analysis of a continuum model of phase transition , 1991 .
[26] Xiaofeng Yang,et al. Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows , 2010 .