DNA origami-based protein networks: from basic construction to emerging applications.

Natural living systems are driven by delicate protein networks whose functions are precisely controlled by many parameters, such as number, distance, orientation, and position. Focusing on regulation rather than just imitation, the construction of artificial protein networks is important in many research areas, including biomedicine, synthetic biology and chemical biology. DNA origami, sophisticated nanostructures with rational design, can offer predictable, programmable, and addressable scaffolds for protein assembly with nanometer precision. Recently, many interdisciplinary efforts have achieved the precise construction of DNA origami-based protein networks, and their emerging application in many areas. To inspire more fantastic research and applications, herein we highlight the applicability and potentiality of DNA origami-based protein networks. After a brief introduction to the development and features of DNA origami, some important factors for the precise construction of DNA origami-based protein networks are discussed, including protein-DNA conjugation methods, networks with different patterns and the controllable parameters in the networks. The discussion then focuses on the emerging application of DNA origami-based protein networks in several areas, including enzymatic reaction regulation, sensing, bionics, biophysics, and biomedicine. Finally, current challenges and opportunities in this research field are discussed.

[1]  Hao Yan,et al.  Single-stranded DNA and RNA origami , 2017, Science.

[2]  Paul W K Rothemund,et al.  Erratum: Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion , 2014, Nature Communications.

[3]  Sivaraj Sivaramakrishnan,et al.  Myosin lever arm directs collective motion on cellular actin network , 2014, Proceedings of the National Academy of Sciences.

[4]  Tom A. Rapoport,et al.  Reconstitution of the tubular endoplasmic reticulum network with purified components , 2017, Nature.

[5]  Yoshie Harada,et al.  Construction of integrated gene logic-chip , 2018, Nature Nanotechnology.

[6]  Victor Pan,et al.  The Beauty and Utility of DNA Origami , 2017 .

[7]  Hao Yan,et al.  Organizing DNA origami tiles into larger structures using preformed scaffold frames. , 2011, Nano letters.

[8]  Eiji Nakata,et al.  Spatially Organized Enzymes Drive Cofactor-Coupled Cascade Reactions. , 2016, Journal of the American Chemical Society.

[9]  Jonathan Bath,et al.  Peptide Assembly Directed and Quantified Using Megadalton DNA Nanostructures , 2019, ACS nano.

[10]  Xue Han,et al.  Light-Triggered Release of Bioactive Molecules from DNA Nanostructures. , 2016, Nano letters.

[11]  Gerhard Wagner,et al.  DNA-Corralled Nanodiscs for the Structural and Functional Characterization of Membrane Proteins and Viral Entry. , 2018, Journal of the American Chemical Society.

[12]  Igor L. Medintz,et al.  Analyzing DNA Nanotechnology: A Call to Arms For The Analytical Chemistry Community. , 2017, Analytical chemistry.

[13]  H. Sleiman,et al.  Single-molecule methods in structural DNA nanotechnology. , 2020, Chemical Society reviews.

[14]  Keiyu Ou,et al.  DNA origami based visualization system for studying site-specific recombination events. , 2014, Journal of the American Chemical Society.

[15]  Oliver Seitz,et al.  DNA-guided display of proteins and protein ligands for the interrogation of biology. , 2011, Chemical Society reviews.

[16]  Gabriel A. Frank,et al.  Packaging of DNA origami in viral capsids. , 2019, Nanoscale.

[17]  Shana J Sturla,et al.  Torsional Constraints of DNA Substrates Impact Cas9 Cleavage. , 2016, Journal of the American Chemical Society.

[18]  T. Levine,et al.  Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes , 2018, Nature Reviews Molecular Cell Biology.

[19]  W. Shih,et al.  Extrusion of RNA from a DNA-Origami-Based Nanofactory. , 2020, ACS Nano.

[20]  M. Komiyama,et al.  Stepwise and reversible nanopatterning of proteins on a DNA origami scaffold. , 2010, Chemical communications.

[21]  Hao Yan,et al.  Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. , 2007, Journal of the American Chemical Society.

[22]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[23]  Hélder A Santos,et al.  Cellular delivery of enzyme-loaded DNA origami. , 2016, Chemical communications.

[24]  Veikko Linko,et al.  Reconfigurable DNA Origami Nanocapsule for pH-Controlled Encapsulation and Display of Cargo , 2019, ACS nano.

[25]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[26]  Kersten S. Rabe,et al.  A Rationally Designed Connector for Assembly of Protein‐Functionalized DNA Nanostructures , 2016, Chembiochem : a European journal of chemical biology.

[27]  Pamela A Silver,et al.  Designing biological compartmentalization. , 2012, Trends in cell biology.

[28]  Hao Yan,et al.  Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion , 2016, Nature Communications.

[29]  I. Wheeldon,et al.  Engineering enzyme microenvironments for enhanced biocatalysis. , 2018, Chemical Society reviews.

[30]  Jenny V Le,et al.  Probing Nucleosome Stability with a DNA Origami Nanocaliper. , 2016, ACS nano.

[31]  Hao Yan,et al.  Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. , 2012, Journal of the American Chemical Society.

[32]  Direct visualization of human myosin II force generation using DNA origami-based thick filaments , 2019, Communications Biology.

[33]  Akinori Kuzuya,et al.  Precisely Programmed and Robust 2D Streptavidin Nanoarrays by Using Periodical Nanometer‐Scale Wells Embedded in DNA Origami Assembly , 2009, Chembiochem : a European journal of chemical biology.

[34]  Da Han,et al.  An Intelligent DNA Nanorobot for Autonomous Anticoagulation. , 2020, Angewandte Chemie.

[35]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[36]  Kurt V. Gothelf,et al.  Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template. , 2010, ACS nano.

[37]  Hao Yan,et al.  2D Enzyme Cascade Network with Efficient Substrate Channeling by Swinging Arms , 2018, Chembiochem : a European journal of chemical biology.

[38]  G. Arrabito,et al.  Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis. , 2015, The Analyst.

[39]  Lulu Qian,et al.  Asymmetric DNA Origami for Spatially Addressable and Index‐Free Solution‐Phase DNA Chips , 2010, Advanced materials.

[40]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[41]  Jenny V. Le,et al.  Quantitative Modeling of Nucleosome Unwrapping from Both Ends. , 2019, Biophysical journal.

[42]  Fei Zhang,et al.  DNA Origami: Scaffolds for Creating Higher Order Structures. , 2017, Chemical reviews.

[43]  David Neff,et al.  NTA directed protein nanopatterning on DNA Origami nanoconstructs. , 2009, Journal of the American Chemical Society.

[44]  M. Merkx,et al.  Incorporation of native antibodies and Fc-fusion proteins on DNA nanostructures via a modular conjugation strategy† †Electronic supplementary information (ESI) available: Experimental methods, DNA origami design, DNA sequences, and additional experimental data. See DOI: 10.1039/c7cc04178k , 2017, Chemical communications.

[45]  P. Wright,et al.  Zinc finger proteins: new insights into structural and functional diversity. , 2001, Current opinion in structural biology.

[46]  Veikko Linko,et al.  A modular DNA origami-based enzyme cascade nanoreactor. , 2015, Chemical communications.

[47]  Hao Yan,et al.  Complex silica composite nanomaterials templated with DNA origami , 2018, Nature.

[48]  Jin Cheng,et al.  Create Nanoscale Patterns with DNA Origami. , 2019, Small.

[49]  Lichen Yin,et al.  Recent Advances in Anti-cancer Protein/Peptide Delivery. , 2018, Bioconjugate chemistry.

[50]  Ronald D Vale,et al.  The Molecular Motor Toolbox for Intracellular Transport , 2003, Cell.

[51]  C. Kielar,et al.  Pharmacophore Nanoarrays on DNA Origami Substrates as a Single-Molecule Assay for Fragment-Based Drug Discovery. , 2018, Angewandte Chemie.

[52]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[53]  David Baddeley,et al.  A Programmable DNA Origami Platform for Organizing Intrinsically Disordered Nucleoporins within Nanopore Confinement. , 2018, ACS nano.

[54]  Hendrik Dietz,et al.  Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes , 2017, Science.

[55]  T. LaBean,et al.  Toward larger DNA origami. , 2014, Nano letters.

[56]  Ramon Eritja,et al.  DNA Nanoarchitectures: Steps towards Biological Applications , 2014, Chembiochem : a European journal of chemical biology.

[57]  Nevan J. Krogan,et al.  An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells , 2017, Cell.

[58]  Stella Hurtley,et al.  Spatial cell biology. Location, location, location. Introduction. , 2009, Science.

[59]  Björn Högberg,et al.  Binding to Nanopatterned Antigens is Dominated by the Spatial Tolerance of Antibodies , 2018, Nature Nanotechnology.

[60]  V. Rotello,et al.  Promises and Pitfalls of Intracellular Delivery of Proteins , 2014, Bioconjugate chemistry.

[61]  Hao Yan,et al.  DNA Nanostructures as Programmable Biomolecular Scaffolds. , 2015, Bioconjugate chemistry.

[62]  Itamar Willner,et al.  Enzyme cascades activated on topologically programmed DNA scaffolds. , 2009, Nature nanotechnology.

[63]  Akinori Kuzuya,et al.  Programmed nanopatterning of organic/inorganic nanoparticles using nanometer-scale wells embedded in a DNA origami scaffold. , 2010, Small.

[64]  Hao Yan,et al.  Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. , 2017, Nature chemistry.

[65]  Zhen Gu,et al.  Tailoring nanocarriers for intracellular protein delivery. , 2011, Chemical Society reviews.

[66]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[67]  Jason Reed,et al.  DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle , 2017, Nature Communications.

[68]  Jinyi Dong,et al.  Toward Precise Manipulation of DNA-Protein Hybrid Nanoarchitectures. , 2019, Small.

[69]  Igor L. Medintz,et al.  Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle. , 2019, ACS nano.

[70]  C. Niemeyer,et al.  From DNA Nanotechnology to Material Systems Engineering , 2019, Advanced materials.

[71]  Dongsheng Liu,et al.  A switchable DNA origami nanochannel for regulating molecular transport at the nanometer scale. , 2016, Nanoscale.

[72]  Hao Yan,et al.  Scaffolded DNA origami of a DNA tetrahedron molecular container. , 2009, Nano letters.

[73]  Kersten S. Rabe,et al.  Orthogonal protein decoration of DNA origami. , 2010, Angewandte Chemie.

[74]  Hao Yan,et al.  A route to scale up DNA origami using DNA tiles as folding staples. , 2010, Angewandte Chemie.

[75]  Yonggang Ke,et al.  Structurally Ordered Nanowire Formation from Co-Assembly of DNA Origami and Collagen-Mimetic Peptides. , 2017, Journal of the American Chemical Society.

[76]  Chunhai Fan,et al.  Molecular threading and tunable molecular recognition on DNA origami nanostructures. , 2013, Journal of the American Chemical Society.

[77]  Ebbe Sloth Andersen,et al.  Control of enzyme reactions by a reconfigurable DNA nanovault , 2017, Nature Communications.

[78]  Michael S. Goldberg,et al.  Immunoengineering: How Nanotechnology Can Enhance Cancer Immunotherapy , 2015, Cell.

[79]  A. J. Markvoort,et al.  Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome , 2019, Nature Catalysis.

[80]  J. Spatz,et al.  Cobalt(III) as a Stable and Inert Mediator Ion between NTA and His6-Tagged Proteins** , 2013, Angewandte Chemie.

[81]  Paramjit S. Arora,et al.  Amyloid fibrils nucleated and organized by DNA origami constructions , 2014, Nature nanotechnology.

[82]  Joseph Nichols,et al.  Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami. , 2015, ACS nano.

[83]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[84]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[85]  Wael Mamdouh,et al.  A novel secondary DNA binding site in human topoisomerase I unravelled by using a 2D DNA origami platform. , 2010, ACS nano.

[86]  Hendrik Dietz,et al.  Biotechnological mass production of DNA origami , 2017, Nature.

[87]  Katherine E. Dunn,et al.  Precision Templated Bottom-Up Multiprotein Nanoassembly through Defined Click Chemistry Linkage to DNA. , 2017, ACS nano.

[88]  D. Baker,et al.  Protein interaction networks revealed by proteome coevolution , 2019, Science.

[89]  Antti-Pekka Eskelinen,et al.  Virus-encapsulated DNA origami nanostructures for cellular delivery. , 2014, Nano letters.

[90]  J. Rossi,et al.  Aptamers as targeted therapeutics: current potential and challenges , 2016, Nature Reviews Drug Discovery.

[91]  Jing Wang,et al.  A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. , 2016, Journal of the American Chemical Society.

[92]  Tanmay A M Bharat,et al.  Design of a molecular support for cryo-EM structure determination , 2016, Proceedings of the National Academy of Sciences.

[93]  Hao Yan,et al.  Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. , 2010, Nano letters.

[94]  Kurt V Gothelf,et al.  Probing electron-induced bond cleavage at the single-molecule level using DNA origami templates. , 2012, ACS nano.

[95]  Masayuki Endo,et al.  Single molecule visualization and characterization of Sox2-Pax6 complex formation on a regulatory DNA element using a DNA origami frame. , 2014, Nano letters.

[96]  Baoquan Ding,et al.  A DNA nanodevice-based vaccine for cancer immunotherapy , 2020, Nature Materials.

[97]  Zhongqiang Yang,et al.  DNA Origami as Seeds for Promoting Protein Crystallization. , 2018, ACS applied materials & interfaces.

[98]  T. Yanagida,et al.  A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads , 2016, Nature Communications.

[99]  Shawn M. Douglas,et al.  Multilayer DNA origami packed on a square lattice. , 2009, Journal of the American Chemical Society.

[100]  E. Hochuli,et al.  New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. , 1987, Journal of chromatography.

[101]  J. Kjems,et al.  Enzymatic ligation of large biomolecules to DNA. , 2013, ACS nano.

[102]  Travis A. Meyer,et al.  Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator , 2016, Nature Communications.

[103]  Hendrik Dietz,et al.  Exploring Nucleosome Unwrapping Using DNA Origami. , 2016, Nano letters.

[104]  J. Spudich,et al.  Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments. , 2015, Nature nanotechnology.

[105]  Role of nanoscale antigen organization on B-cell activation probed using DNA origami , 2020, Nature Nanotechnology.

[106]  Shawn M. Douglas,et al.  DNA-nanotube-induced alignment of membrane proteins for NMR structure determination , 2007, Proceedings of the National Academy of Sciences.

[107]  A. Patra,et al.  Nanoscale Strategies for Light Harvesting. , 2017, Chemical reviews.

[108]  Pedro Carvalho,et al.  Here, there, and everywhere: The importance of ER membrane contact sites , 2018, Science.

[109]  Ramon Eritja,et al.  DNA origami as a DNA repair nanosensor at the single-molecule level. , 2013, Angewandte Chemie.

[110]  P. Camilli,et al.  The BAR Domain Superfamily: Membrane-Molding Macromolecules , 2009, Cell.

[111]  Baoquan Ding,et al.  Efficient Intracellular Delivery of RNase A Using DNA Origami Carriers. , 2019, ACS applied materials & interfaces.

[112]  J. Keith Joung,et al.  Efficient Delivery of Genome-Editing Proteins In Vitro and In Vivo , 2014, Nature Biotechnology.

[113]  Akinori Kuzuya,et al.  Orthogonal enzyme arrays on a DNA origami scaffold bearing size-tunable wells. , 2014, Nanoscale.

[114]  Chin-Lin Guo,et al.  Computational design of co-assembling protein–DNA nanowires , 2015, Nature.

[115]  M. Goto,et al.  Conjugation of DNA with protein using His-tag chemistry and its application to the aptamer-based detection system , 2008, Biotechnology Letters.

[116]  H. Dinh,et al.  A modular zinc finger adaptor accelerates the covalent linkage of proteins at specific locations on DNA nanoscaffolds. , 2015, Chemical communications.

[117]  Yonggang Ke,et al.  Selective in Situ Assembly of Viral Protein onto DNA Origami. , 2018, Journal of the American Chemical Society.

[118]  Johannes B. Woehrstein,et al.  Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT , 2014, Science.

[119]  Masayuki Endo,et al.  Mimicking membrane-related biological events by DNA origami nanotechnology. , 2015, ACS nano.

[120]  G. Feng,et al.  SHANK proteins: roles at the synapse and in autism spectrum disorder , 2017, Nature Reviews Neuroscience.

[121]  Cheng Zhu,et al.  Programmable Multivalent DNA-Origami Tension Probes for Reporting Cellular Traction Forces. , 2018, Nano letters.

[122]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[123]  Samir Mitragotri,et al.  Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies , 2014, Nature Reviews Drug Discovery.

[124]  Chunhai Fan,et al.  Docking of Antibodies into the Cavities of DNA Origami Structures. , 2017, Angewandte Chemie.

[125]  Yufang Xu,et al.  Programming Rotary Motions with a Hexagonal DNA Nanomachine. , 2019, Chemistry.

[126]  Q. Luo,et al.  Protein self-assembly via supramolecular strategies. , 2016, Chemical Society reviews.

[127]  J. Chao,et al.  Folding super-sized DNA origami with scaffold strands from long-range PCR. , 2012, Chemical communications.

[128]  Wendell A. Lim,et al.  Scaffold Proteins: Hubs for Controlling the Flow of Cellular Information , 2011, Science.

[129]  Veikko Linko,et al.  Challenges and Perspectives of DNA Nanostructures in Biomedicine , 2020, Angewandte Chemie.

[130]  H. Dietz,et al.  Uncovering the forces between nucleosomes using DNA origami , 2016, Science Advances.

[131]  Hendrik Dietz,et al.  Building machines with DNA molecules , 2019, Nature Reviews Genetics.

[132]  Hao Yan,et al.  Constructing Submonolayer DNA Origami Scaffold on Gold Electrode for Wiring of Redox Enzymatic Cascade Pathways. , 2018, ACS applied materials & interfaces.

[133]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[134]  F. Simmel,et al.  Surface-assisted large-scale ordering of DNA origami tiles. , 2014, Angewandte Chemie.

[135]  D. Whitford,et al.  Proteins: Structure and Function , 2005, Annals of Biomedical Engineering.

[136]  K. Namba,et al.  DNA prism structures constructed by folding of multiple rectangular arms. , 2009, Journal of the American Chemical Society.

[137]  Masayuki Endo,et al.  A versatile DNA nanochip for direct analysis of DNA base-excision repair. , 2010, Angewandte Chemie.

[138]  William M. Shih,et al.  Addressing the Instability of DNA Nanostructures in Tissue Culture , 2014, ACS nano.

[139]  Ting-Yu Lin,et al.  A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly , 2016, Scientific Reports.

[140]  J. Klein-Seetharaman,et al.  Membrane Protein Structure and Dynamics , 2012, Methods in Molecular Biology.

[141]  Peng Yin,et al.  Rotation tracking of genome-processing enzymes using DNA origami rotors , 2019, Nature.

[142]  H. Dinh,et al.  Protein adaptors assemble functional proteins on DNA scaffolds. , 2019, Chemical communications.

[143]  Lulu Qian,et al.  Programmable disorder in random DNA tilings. , 2017, Nature nanotechnology.

[144]  P. De Camilli,et al.  A programmable DNA-origami platform for studying lipid transfer between bilayers , 2019, Nature Chemical Biology.

[145]  Thomas Tørring,et al.  DNA-templated covalent coupling of G4 PAMAM dendrimers. , 2010, Journal of the American Chemical Society.

[146]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[147]  S. B. Stephan,et al.  Biopolymer implants enhance the efficacy of adoptive T cell therapy , 2014, Nature Biotechnology.

[148]  Timothy K Lu,et al.  Directing curli polymerization with DNA origami nucleators , 2019, Nature Communications.

[149]  Khalid Salaita,et al.  Emerging uses of DNA mechanical devices , 2019, Science.

[150]  J. Chao,et al.  Real-Time Imaging of Single-Molecule Enzyme Cascade Using a DNA Origami Raft. , 2017, Journal of the American Chemical Society.

[151]  Akihiko Konagaya,et al.  Artificial Smooth Muscle Model Composed of Hierarchically Ordered Microtubule Asters Mediated by DNA Origami Nanostructures. , 2019, Nano letters.

[152]  C. Dekker,et al.  DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex , 2018, Nature Communications.

[153]  Julián Valero,et al.  A bio-hybrid DNA rotor/stator nanoengine that moves along predefined tracks , 2018, Nature Nanotechnology.

[154]  Eiji Nakata,et al.  Zinc-finger proteins for site-specific protein positioning on DNA-origami structures. , 2012, Angewandte Chemie.

[155]  Thomas Tørring,et al.  Functional patterning of DNA origami by parallel enzymatic modification. , 2011, Bioconjugate chemistry.

[156]  Baoquan Ding,et al.  Rationally Designed DNA‐Origami Nanomaterials for Drug Delivery In Vivo , 2018, Advanced materials.

[157]  Baoquan Ding,et al.  A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo , 2018, Nature Biotechnology.

[158]  Hao Yan,et al.  Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold. , 2016, Angewandte Chemie.

[159]  Kurt V Gothelf,et al.  Chemistries for DNA Nanotechnology. , 2019, Chemical reviews.

[160]  Hao Yan,et al.  A Synthetic Light-Driven Substrate Channeling System for Precise Regulation of Enzyme Cascade Activity Based on DNA Origami. , 2018, Journal of the American Chemical Society.

[161]  Friedrich C. Simmel,et al.  Membrane-Assisted Growth of DNA Origami Nanostructure Arrays , 2015, ACS nano.

[162]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[163]  Jie Chao,et al.  Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. , 2013, Journal of the American Chemical Society.

[164]  M. Ryadnov,et al.  DNA Origami Inside-Out Viruses. , 2018, ACS synthetic biology.

[165]  Wolfgang Pfeifer,et al.  From Nano to Macro through Hierarchical Self‐Assembly: The DNA Paradigm , 2016, Chembiochem : a European journal of chemical biology.

[166]  Zhao Zhang,et al.  Vesicle Tubulation with Self-Assembling DNA Nanosprings. , 2018, Angewandte Chemie.

[167]  C. Fan,et al.  Programming Cell-Cell Communications with engineered cell origami clusters. , 2020, Journal of the American Chemical Society.

[168]  Tim Liedl,et al.  Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp , 2016, Science.