Review of Form-Finding Methods for Tensegrity Structures

Seven form-finding methods for tensegrity structures are reviewed and classified. The three kinematical methods include an analytical approach, a non-linear optimisation, and a pseudo-dynamic iteration. The four statical methods include an analytical method, the formulation of linear equations of equilibrium in terms of force densities, an energy minimisation, and a search for the equilibrium configurations of the struts of the structure connected by cables whose lengths are to be determined, using a reduced set of equilibrium equations. It is concluded that the kinematical methods are best suited to obtaining only configuration details of structures that are already essentially known. The force density method is best suited to searching for new configurations, but affords no control over the lengths of the elements of the structure. The reduced coordinates method offers a greater control on elements lengths, but requires more extensive symbolic manipulations.

[1]  R. V. b. Southwell,et al.  An introduction to the theory of elasticity for engineers and physicists , 1936 .

[2]  Robert W. Marks,et al.  The Dymaxion world of Buckminster Fuller , 1960 .

[3]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.

[4]  K. Linkwitz,et al.  Einige Bemerkungen zur Berechnung von vorgespannten Seilnetzkonstruktionen , 1971 .

[5]  H. Schek The force density method for form finding and computation of general networks , 1974 .

[6]  H. Kenner Geodesic Math and How to Use It , 1976 .

[7]  Anthony Pugh,et al.  An Introduction to Tensegrity , 1976 .

[8]  R. J. Atkin,et al.  An introduction to the theory of elasticity , 1981 .

[9]  R. Connelly Rigidity and energy , 1982 .

[10]  Sergio Pellegrino,et al.  Mechanics of kinematically indeterminate structures , 1986 .

[11]  Sihem Belkacem Recherche de forme par relaxation dynamique des structures reticulees spatiales autocontraintes , 1987 .

[12]  M Sun,et al.  A direct approach. , 1987, Science.

[13]  M. R. Barnes,et al.  Form-finding and analysis of prestressed nets and membranes , 1988 .

[14]  R. Motro Tensegrity Systems and Geodesic Domes , 1990 .

[15]  René Motro,et al.  Tensegrity Systems: The State of the Art , 1992 .

[16]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[17]  R. Connelly CHAPTER 1.7 – Rigidity , 1993 .

[18]  D. Ingber,et al.  Cellular tensegrity : defining new rules of biological design that govern the cytoskeleton , 2022 .

[19]  R. Connelly In Handbook of Convex Geometry , 1993 .

[20]  S. Pellegrino Structural computations with the singular value decomposition of the equilibrium matrix , 1993 .

[21]  R. Motro,et al.  Form finding numerical methods for tensegrity systems. , 1994 .

[22]  Reg Connelly,et al.  Globally rigid Symmetric Tensegrities , 1995 .

[23]  N. Vassart Recherche de forme et stabilité des systèmes réticulés autocontraints : applications aux systèmes de tenségrité , 1997 .

[24]  R. Connelly,et al.  Mathematics and Tensegrity , 1998, American Scientist.

[25]  Sergio Pellegrino,et al.  SHAPE OF DEPLOYABLE MEMBRANE REFLECTORS , 1998 .

[26]  René Motro,et al.  Multiparametered Formfinding Method: Application to Tensegrity Systems , 1999 .

[27]  C. Sultan Modeling, design, and control of tensegrity structures with applications , 1999 .

[28]  Klaus Linkwitz Formfinding by the “Direct Approach” and Pertinent Strategies for the Conceptual Design of Prestressed and Hanging Structures , 1999 .

[29]  Cornel Sultan,et al.  REDUCED PRESTRESSABILITY CONDITIONS FOR TENSEGRITY STRUCTURES , 1999 .

[30]  M. Thorpe,et al.  Rigidity theory and applications , 2002 .

[31]  Robert Connelly,et al.  TENSEGRITY STRUCTURES: WHY ARE THEY STABLE? , 2002 .

[32]  Hugh Porteous Linear Algebra and its Applications (Third edition)Title: Linear Algebra and its Applications ( Third edition ) Author: David C. Lay Addison Wesley 2003 , ISBN: 0-201-70970-8 , 2003 .