Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis

[1]  L. Isaksson,et al.  Functional interplay between the jaw domain of bacterial RNA polymerase and allele-specific residues in the product RNA-binding pocket. , 2006, Journal of molecular biology.

[2]  B. Coulombe,et al.  Structural Perspective on Mutations Affecting the Function of Multisubunit RNA Polymerases , 2006, Microbiology and Molecular Biology Reviews.

[3]  J. Symerský,et al.  Regulation through the RNA Polymerase Secondary Channel , 2006, Journal of Biological Chemistry.

[4]  Naohiro Matsugaki,et al.  Structural basis for transcription inhibition by tagetitoxin , 2005, Nature Structural &Molecular Biology.

[5]  K. Murakami,et al.  Structure and function of lineage-specific sequence insertions in the bacterial RNA polymerase beta' subunit. , 2005, Journal of molecular biology.

[6]  T. Tahirov,et al.  Structural basis of transcription inhibition by antibiotic streptolydigin. , 2005, Molecular cell.

[7]  A. D. Clark,et al.  Inhibition of Bacterial RNA Polymerase by Streptolydigin: Stabilization of a Straight-Bridge-Helix Active-Center Conformation , 2005, Cell.

[8]  Wei Yang,et al.  Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis , 2005, Cell.

[9]  Arkady Mustaev,et al.  A Ratchet Mechanism of Transcription Elongation and Its Control , 2005, Cell.

[10]  Y. Nakamura,et al.  Localization ofnusA-suppressing amino acid substitutions in the conserved regions of theβ′ subunit ofEscherichia coli RNA polymerase , 1996, Molecular and General Genetics MGG.

[11]  P. Cramer,et al.  Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. , 2004, Molecular cell.

[12]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[13]  D. Bushnell,et al.  Structural Basis of Transcription Nucleotide Selection by Rotation in the RNA Polymerase II Active Center , 2004, Cell.

[14]  D. Vassylyev,et al.  Discrimination against Deoxyribonucleotide Substrates by Bacterial RNA Polymerase* , 2004, Journal of Biological Chemistry.

[15]  R. Landick,et al.  Downstream DNA selectively affects a paused conformation of human RNA polymerase II. , 2004, Journal of molecular biology.

[16]  Shigeyuki Yokoyama,et al.  Regulation through the Secondary Channel—Structural Framework for ppGpp-DksA Synergism during Transcription , 2004, Cell.

[17]  Jennifer L. Knight,et al.  Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. , 2004, Molecular cell.

[18]  S. Yokoyama,et al.  Structural Basis for Transcription Regulation by Alarmone ppGpp , 2004, Cell.

[19]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[20]  O. Laptenko,et al.  Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase , 2003, The EMBO journal.

[21]  P. Cramer,et al.  Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage , 2003, Cell.

[22]  Peter Briggs,et al.  A graphical user interface to the CCP4 program suite. , 2003, Acta crystallographica. Section D, Biological crystallography.

[23]  S. Nechaev,et al.  Mutations of Bacterial RNA Polymerase Leading to Resistance to Microcin J25* , 2002, The Journal of Biological Chemistry.

[24]  V. Markovtsov,et al.  Swing-gate model of nucleotide entry into the RNA polymerase active center. , 2002, Molecular cell.

[25]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[26]  Patrick Cramer,et al.  Structural basis of transcription: α-Amanitin–RNA polymerase II cocrystal at 2.8 Å resolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[28]  Patrick Cramer,et al.  Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  K.,et al.  Biochemistry of Deoxyribonucleic Acid-defective Amber Mutants of Bacteriophage T4 , 2002 .

[30]  R. Farías,et al.  Escherichia coli RNA Polymerase Is the Target of the Cyclopeptide Antibiotic Microcin J25 , 2001, Journal of bacteriology.

[31]  B. Séraphin,et al.  The tandem affinity purification (TAP) method: a general procedure of protein complex purification. , 2001, Methods.

[32]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[33]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[34]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[35]  P. Cramer,et al.  Architecture of RNA polymerase II and implications for the transcription mechanism. , 2000, Science.

[36]  M. Kashlev,et al.  The 8-Nucleotide-long RNA:DNA Hybrid Is a Primary Stability Determinant of the RNA Polymerase II Elongation Complex* , 2000, The Journal of Biological Chemistry.

[37]  K. Severinov,et al.  Mutations in and Monoclonal Antibody Binding to Evolutionary Hypervariable Region of Escherichia coli RNA Polymerase β′ Subunit Inhibit Transcript Cleavage and Transcript Elongation* , 1998, The Journal of Biological Chemistry.

[38]  J. Greenblatt,et al.  Stimulation of Transcription by Mutations Affecting Conserved Regions of RNA Polymerase II , 1998, Journal of bacteriology.

[39]  M. Chamberlin,et al.  Basic mechanisms of transcript elongation and its regulation. , 1997, Annual review of biochemistry.

[40]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[41]  D. Barford Molecular mechanisms of the protein serine/threonine phosphatases. , 1996, Trends in biochemical sciences.

[42]  S. Lippard,et al.  Repair of cisplatin--DNA adducts by the mammalian excision nuclease. , 1996, Biochemistry.

[43]  K. Brew,et al.  Mutational analysis of the catalytic subunit of muscle protein phosphatase-1. , 1996, Biochemistry.

[44]  V. Markovtsov,et al.  Protein-RNA interactions in the active center of transcription elongation complex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Sentenac,et al.  Mutations in the alpha‐amanitin conserved domain of the largest subunit of yeast RNA polymerase III affect pausing, RNA cleavage and transcriptional transitions. , 1996, The EMBO journal.

[46]  Y. Nakamura,et al.  Localization of nusA-suppressing amino acid substitutions in the conserved regions of the beta' subunit of Escherichia coli RNA polymerase. , 1996, Molecular & general genetics : MGG.

[47]  C. Price,et al.  Streptolydigin resistance can be conferred by alterations to either the beta or beta' subunits of Bacillus subtilis RNA polymerase. , 1995, The Journal of biological chemistry.

[48]  R. Landick,et al.  Termination-altering amino acid substitutions in the beta' subunit of Escherichia coli RNA polymerase identify regions involved in RNA chain elongation. , 1994, Genes & development.

[49]  J. Lindsley,et al.  Use of single-turnover kinetics to study bulky adduct bypass by T7 DNA polymerase. , 1994, Biochemistry.

[50]  D. Lilley,et al.  DNA replication, 2nd edn , 1992 .

[51]  S. Borukhov,et al.  Mapping of a contact for the RNA 3' terminus in the largest subunit of RNA polymerase. , 1991, The Journal of biological chemistry.

[52]  R. Young,et al.  Mutations in a conserved region of RNA polymerase II influence the accuracy of mRNA start site selection. , 1991, Molecular and cellular biology.

[53]  R. Young,et al.  Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. , 1991, The Journal of biological chemistry.

[54]  Michael Shales,et al.  Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases , 1985, Cell.

[55]  L. Gudas,et al.  Ribonucleotide reductase activity and deoxyribonucleoside triphosphate metabolism during the cell cycle of S49 wild-type and mutant mouse T-lymphoma cells. , 1985, The Journal of biological chemistry.

[56]  P. Reichard Ribonucleotide reductase and deoxyribonucleotide pools. , 1985, Basic life sciences.

[57]  M. Chamberlin,et al.  Ribonucleic acid chain elongation by Escherichia coli ribonucleic acid polymerase. I. Isolation of ternary complexes and the kinetics of elongation. , 1974, The Journal of biological chemistry.

[58]  C. Mathews Biochemistry of deoxyribonucleic acid-defective amber mutants of bacteriophage T4. 3. Nucleotide pools. , 1972, The Journal of biological chemistry.

[59]  Fox Cf,et al.  ENZYMATIC SYNTHESIS OF RIBONUCLEIC ACID. II. PROPERTIES OF THE DEOXYRIBONUCLEIC ACID-PRIMED REACTION WITH MICROCOCCUS LYSODEIKTICUS RIBONUCLEIC ACID POLYMERASE. , 1964 .

[60]  S. Weiss,et al.  ENZYMATIC SYNTHESIS OF RIBONUCLEIC ACID. II. PROPERTIES OF THE DEOXYRIBONUCLEIC ACID-PRIMED REACTION WITH MICROCOCCUS LYSODEIKTICUS RIBONUCLEIC ACID POLYMERASE. , 1964, The Journal of biological chemistry.

[61]  J. Hurwitz,et al.  The role of deoxyribonucleic acid in ribonucleic acid synthesis. I. The purification and properties of ribonucleic acid polymerase. , 1962, The Journal of biological chemistry.

[62]  M. Chamberlin,et al.  DEOXYRIBONUCLEIC ACID-DIRECTED SYNTHESIS OF RIBONUCLEIC ACID BY AN ENZYME FROM ESCHERICHIA COLI , 1962 .

[63]  M. Chamberlin,et al.  Deoxyribo ucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. , 1962, Proceedings of the National Academy of Sciences of the United States of America.