Atypical functional connectome hierarchy impacts cognition in temporal lobe epilepsy

Drug‐resistant temporal lobe epilepsy (TLE) is typically associated with hippocampal pathology. However, widespread network alterations are increasingly recognized and suggested to perturb cognitive function in multiple domains. Here we tested (1) whether TLE shows atypical cortical hierarchical organization, differentiating sensory and higher order systems; and (2) whether atypical hierarchy predicts cognitive impairment.

[1]  V. Ives-Deliperi,et al.  Mechanisms of cognitive impairment in temporal lobe epilepsy: A systematic review of resting-state functional connectivity studies , 2020, Epilepsy & Behavior.

[2]  B. Bernhardt,et al.  Connectome biomarkers of drug‐resistant epilepsy , 2020, Epilepsia.

[3]  Viktor Jirsa,et al.  Dynamical Mechanisms of Interictal Resting-State Functional Connectivity in Epilepsy , 2020, The Journal of Neuroscience.

[4]  P. Golshani,et al.  WONOEP appraisal: Network concept from an imaging perspective , 2019, Epilepsia.

[5]  M. Verhoye,et al.  In vivo measurement of brain network connectivity reflects progression and intrinsic disease severity in a model of temporal lobe epilepsy , 2019, Neurobiology of Disease.

[6]  Boris C. Bernhardt,et al.  Multidimensional associations between cognition and connectome organization in temporal lobe epilepsy , 2019, NeuroImage.

[7]  Erik Kaestner,et al.  Cognitive phenotypes in temporal lobe epilepsy are associated with distinct patterns of white matter network abnormalities , 2019, Neurology.

[8]  Alan C. Evans,et al.  Microstructural and functional gradients are increasingly dissociated in transmodal cortices , 2019, PLoS biology.

[9]  Reinder Vos de Wael,et al.  Atypical functional connectome hierarchy in autism , 2018, Nature Communications.

[10]  Neda Bernasconi,et al.  Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study , 2018, Brain : a journal of neurology.

[11]  M. Koepp,et al.  Imaging Biomarkers of Anti-Epileptic Drug Action: Insights from Magnetic Resonance Imaging. , 2017, Current pharmaceutical design.

[12]  Neda Bernasconi,et al.  The spectrum of structural and functional network alterations in malformations of cortical development , 2017, Brain : a journal of neurology.

[13]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[14]  Reinder Vos de Wael,et al.  Preferential susceptibility of limbic cortices to microstructural damage in temporal lobe epilepsy: A quantitative T1 mapping study , 2017, NeuroImage.

[15]  Neda Bernasconi,et al.  Multimodal MRI profiling of focal cortical dysplasia type II , 2017, Neurology.

[16]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[17]  Boris C. Bernhardt,et al.  A Surface Patch-Based Segmentation Method for Hippocampal Subfields , 2016, MICCAI.

[18]  L. F. Barrett,et al.  Redefining the Role of Limbic Areas in Cortical Processing , 2016, Trends in Cognitive Sciences.

[19]  Neda Bernasconi,et al.  Gray matter structural compromise is equally distributed in left and right temporal lobe epilepsy , 2016, Human brain mapping.

[20]  David T. Jones,et al.  Cascading network failure across the Alzheimer’s disease spectrum , 2015, Brain : a journal of neurology.

[21]  Manuel Desco,et al.  Sensation‐to‐cognition cortical streams in attention‐deficit/hyperactivity disorder , 2015, Human brain mapping.

[22]  Neda Bernasconi,et al.  Accurate cortical tissue classification on MRI by modeling cortical folding patterns , 2015, Human brain mapping.

[23]  Konrad Wagstyl,et al.  Cortical thickness gradients in structural hierarchies , 2015, NeuroImage.

[24]  J. Engel,et al.  Functional connectivity homogeneity correlates with duration of temporal lobe epilepsy , 2015, Epilepsy & Behavior.

[25]  Jack J. Lin,et al.  Neurodevelopmental alterations of large‐scale structural networks in children with new‐onset epilepsy , 2014, Human brain mapping.

[26]  Matthew F. Glasser,et al.  Trends and Properties of Human Cerebral Cortex: Correlations with Cortical Myelin Content Introduction and Review , 2022 .

[27]  J. Engel,et al.  Functional connectivity of hippocampal networks in temporal lobe epilepsy , 2014, Epilepsia.

[28]  Massimo Avoli,et al.  Resting state networks in temporal lobe epilepsy , 2013, Epilepsia.

[29]  Alex Becker,et al.  In vivo characterization of the early states of the amyloid-beta network. , 2013, Brain : a journal of neurology.

[30]  E. Pataraia,et al.  Prominent oligodendroglial response in surgical specimens of patients with temporal lobe epilepsy. , 2012, Clinical neuropathology.

[31]  M.-Marsel Mesulam,et al.  The evolving landscape of human cortical connectivity: Facts and inferences , 2012, NeuroImage.

[32]  Keith A. Johnson,et al.  Stepwise Connectivity of the Modal Cortex Reveals the Multimodal Organization of the Human Brain , 2012, The Journal of Neuroscience.

[33]  A. Nobre,et al.  Top-down modulation: bridging selective attention and working memory , 2012, Trends in Cognitive Sciences.

[34]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[35]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[36]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[37]  Jack J. Lin,et al.  The neurobiology of cognitive disorders in temporal lobe epilepsy , 2011, Nature Reviews Neurology.

[38]  Raj Sheth,et al.  Brain development in children with new onset epilepsy: A prospective controlled cohort investigation , 2010, Epilepsia.

[39]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[40]  E. Halgren,et al.  Side Matters: Diffusion Tensor Imaging Tractography in Left and Right Temporal Lobe Epilepsy , 2009, American Journal of Neuroradiology.

[41]  M. Jones-Gotman,et al.  Neuropsychological testing in presurgical evaluation , 2009 .

[42]  Bruce Hermann,et al.  The neurobehavioural comorbidities of epilepsy: can a natural history be developed? , 2008, The Lancet Neurology.

[43]  C. Gilbert,et al.  Brain States: Top-Down Influences in Sensory Processing , 2007, Neuron.

[44]  J J Halford,et al.  Asymmetrical extra-hippocampal grey matter loss related to hippocampal atrophy in patients with medial temporal lobe epilepsy , 2006, Journal of Neurology, Neurosurgery & Psychiatry.

[45]  Alan C. Evans,et al.  Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification , 2005, NeuroImage.

[46]  Anthony Randal McIntosh,et al.  Partial least squares analysis of neuroimaging data: applications and advances , 2004, NeuroImage.

[47]  D. Arnold,et al.  Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region. , 2003, Brain : a journal of neurology.

[48]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[49]  F. Hillary,et al.  Hyperconnectivity is a fundamental response to neurological disruption. , 2015, Neuropsychology.

[50]  La Kirsten,et al.  The role of cognitive fMRI in mesial temporal lobe epilepsy , 2010 .

[51]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .