Supercritical percolation on graphs of polynomial growth

We consider Bernoulli percolation on transitive graphs of polynomial growth. In the subcritical regime ($p<p_c$), it is well known that the connection probabilities decay exponentially fast. In the present paper, we study the supercritical phase ($p>p_c$) and prove the exponential decay of the truncated connection probabilities (probabilities that two points are connected by an open path, but not to infinity). This sharpness result was established by [CCN87] on $\mathbb Z^d$ and uses the difficult slab result of Grimmett and Marstrand. However, the techniques used there are very specific to the hypercubic lattices and do not extend to more general geometries. In this paper, we develop new robust techniques based on the recent progress in the theory of sharp thresholds and the sprinkling method of Benjamini and Tassion. On $\mathbb Z^d$, these methods can be used to produce a new proof of the slab result of Grimmett and Marstrand.

[1]  V. Tassion,et al.  Locality of percolation for graphs with polynomial growth , 2022, Electronic Communications in Probability.

[2]  Franco Severo,et al.  Sharp phase transition for Gaussian percolation in all dimensions , 2021, Annales Henri Lebesgue.

[3]  Tom Hutchcroft,et al.  Non-triviality of the phase transition for percolation on finite transitive graphs , 2021, 2104.05607.

[4]  H. Duminil-Copin,et al.  Equality of critical parameters for percolation of Gaussian free field level sets , 2020, Duke Mathematical Journal.

[5]  Romain Tessera,et al.  A Finitary Structure Theorem for Vertex-Transitive Graphs of Polynomial Growth , 2019, Comb..

[6]  J. Hermon,et al.  Supercritical percolation on nonamenable graphs: isoperimetry, analyticity, and exponential decay of the cluster size distribution , 2019, Inventiones mathematicae.

[7]  H. Duminil-Copin,et al.  Upper Bounds on the Percolation Correlation Length , 2019, Progress in Probability.

[8]  Aravind Srinivasan,et al.  Probability and Computing , 2018, SIGA.

[9]  Tom Hutchcroft Locality of the critical probability for transitive graphs of exponential growth , 2018, The Annals of Probability.

[10]  H. Duminil-Copin,et al.  Exponential Decay of Truncated Correlations for the Ising Model in any Dimension for all but the Critical Temperature , 2018, Communications in mathematical physics.

[11]  N. Andini Ribosomopathies: Many Questions and A Few Answers , 2018, International Journal of Cell Science & Molecular Biology.

[12]  H. Duminil-Copin,et al.  Existence of phase transition for percolation using the Gaussian free field , 2018, 1806.07733.

[13]  Y. Peres,et al.  Probability on Trees and Networks , 2017 .

[14]  Jérémie Brieussel,et al.  Connectedness of spheres in Cayley graphs , 2016, 1606.02506.

[15]  H. Duminil-Copin,et al.  A new computation of the critical point for the planar random-cluster model with $q\ge1$ , 2016, 1604.03702.

[16]  H. Duminil-Copin,et al.  A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model , 2015, Communications in Mathematical Physics.

[17]  V. Tassion,et al.  Locality of percolation for abelian Cayley graphs , 2013, 1312.1946.

[18]  L. Funar,et al.  On groups with linear sci growth , 2013, 1312.0802.

[19]  R. Cerf A lower bound on the two-arms exponent for critical percolation on the lattice , 2013, 1306.3105.

[20]  J. Jonasson The BK inequality for pivotal sampling a.k.a. the Srinivasan sampling process , 2013 .

[21]  Terence Tao,et al.  A Finitary Version of Gromov’s Polynomial Growth Theorem , 2009, 0910.4148.

[22]  Y. Peres,et al.  Is the critical percolation probability local? , 2009, 0901.4616.

[23]  Bruce Kleiner,et al.  A new proof of Gromov's theorem on groups of polynomial growth , 2007, 0710.4593.

[24]  Benjamin J. Morris,et al.  Ends in Uniform Spanning Forests , 2007, 0706.0358.

[25]  G. Pete A note on percolation on $Z^d$: isoperimetric profile via exponential cluster repulsion , 2007, math/0702474.

[26]  B. Bollobás The art of mathematics : coffee time in Memphis , 2006 .

[27]  Ádám Timár,et al.  Cutsets in Infinite Graphs , 2006, Combinatorics, Probability and Computing.

[28]  B. Bollobás,et al.  The critical probability for random Voronoi percolation in the plane is 1/2 , 2004, math/0410336.

[29]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[30]  I. Benjamini,et al.  Noise sensitivity of Boolean functions and applications to percolation , 1998, math/9811157.

[31]  I. Benjamini,et al.  Percolation Beyond $Z^d$, Many Questions And a Few Answers , 1996 .

[32]  M. Talagrand On Russo's Approximate Zero-One Law , 1994 .

[33]  N. Linial,et al.  The influence of variables in product spaces , 1992 .

[34]  Wolfgang Woess,et al.  Amenability, unimodularity, and the spectral radius of random walks on infinite graphs , 1990 .

[35]  G. Grimmett,et al.  The supercritical phase of percolation is well behaved , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[36]  Yu Zhang,et al.  The Probability of a Large Finite Cluster in Supercritical Bernoulli Percolation , 1990 .

[37]  R. Burton,et al.  Density and uniqueness in percolation , 1989 .

[38]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[39]  H. Kesten,et al.  Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation , 1987 .

[40]  Charles M. Newman,et al.  Bernoulli Percolation Above Threshold: An Invasion Percolation Analysis , 1987 .

[41]  M. Aizenman,et al.  Sharpness of the phase transition in percolation models , 1987 .

[42]  G. Grimmett,et al.  On the uniqueness of the infinite cluster in the percolation model , 1987 .

[43]  H. Kesten The critical probability of bond percolation on the square lattice equals 1/2 , 1980 .

[44]  Hyman Bass,et al.  The Degree of Polynomial Growth of Finitely Generated Nilpotent Groups , 1972 .

[45]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[46]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[47]  N. Curien,et al.  THE ANNALS of PROBABILITY , 2022 .

[48]  Jacques Tits,et al.  Groups of polynomial growth and expanding maps (with an appendix by Jacques Tits) , 2018 .

[49]  J. Rabin,et al.  Mathematical Physics Supertori Are Algebraic Curves* , 2022 .

[50]  SAMEER KAILASA,et al.  TOPICS IN GEOMETRIC GROUP THEORY , 2015 .

[51]  T. Ci SHARPNESS OF THE PHASE TRANSITION AND EXPONENTIAL DECAY OF THE SUBCRITICAL CLUSTER SIZE FOR PERCOLATION ON QUASI-TRANSITIVE GRAPHS , 2007 .

[52]  James W. Cannon,et al.  Geometric Group Theory , 2001 .

[53]  Eric Babson,et al.  Cut sets and normed cohomology with applications to percolation , 1999 .

[54]  T. H. Brylawski,et al.  Proceedings of the American Mathematical Society , 1999 .

[55]  阿部 浩一,et al.  Fundamenta Mathematicae私抄 : 退任の辞に代えて , 1987 .

[56]  Y. Guivarc’h Croissance polynomiale et périodes des fonctions harmoniques , 1973 .

[57]  Akademii︠a︡ nauk Sssr,et al.  Mathematics of the USSR - Sbornik , 1967 .

[58]  Numérisation de documents anciens mathématiques Publications mathématiques de l'IHES , 1959 .

[59]  Jstor Proceedings of the American Mathematical Society , 1950 .

[60]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[61]  Proceedings of the London Mathematical Society , 1877, Nature.