A Newtonian separable model which violates Bell’s inequality

SummaryOn the basis of the Mackey’s axiomatization of quantum mechanics an argument is given which allows, in determinate circumstances, the violation of Bell’s inequality also in a «classical mechanics» and a «classical probability» context. A mechanical model made out of two separate subsystems of coupled oscillators is studied by computer experiments to illustrate the point. In fact, the model violates Bell’s inequality. The hypothesis is put forward that the principal reason for this violation is due to the special kind of «detectors» introduced in the model which give a «count» every time a given dynamical variable of the mechanical system crosses an assigned threshold.RiassuntoL’assiomatizzione della meccanica quantistica di Mackey permette, in determinate circostanze, la violazione della disuguaglianza di Bell anche in un contesto di «meccanica classica» e «probabilità classica». Si studia al calcolatore un modello meccanico costituito da due sottosistemi separati di oscillatori accoppiati che violano la diseguaglianza di Bell e si fa l’ipotesi che la principale ragione di tale violazione è da imputare ai particolari «rivelatori» introdotti nel modello che forniscono un «conteggio» ogni qual volta una determinata variabile dinamica del sistema superi una soglia assegnata.РезюмеАксиоматизация квантовой механики, предложенная Маккеем, при определенных условиях, приводит к нарушению неравенства Белла также в контексте «классичсекой механики» и «классической вероятности». С помощью экспериментов на вычислительной машине исследуется механическая модель, состоящая из двух отдельных подсистем связанных осцилляторов. Предложенная модель нарушает неравенство Белла. Предполагается, что основная причина этого нарушения обусловлена специаляным типом «детекторов», введенных в этой модели, которые выдают «одиночный импульс» каждый раз, когда заданная динамическая переменная механической системы превосходит определенный порог.

[1]  G. Faraci,et al.  Dead time corrections in coincidence measurements by time-to-pulse-height converters or standard coincidence systems , 1979 .

[2]  A. Shimony,et al.  Bell's theorem. Experimental tests and implications , 1978 .

[3]  D. Bohm,et al.  Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky , 1957 .

[4]  B. D'espagnat Conceptual Foundations Of Quantum Mechanics , 1971 .

[5]  K. Popper Birkhoff and von Neumann's Interpretation of Quantum Mechanics , 1968, Nature.

[6]  A. Fine Probability in Quantum Mechanics and in Other Statistical Theories , 1971 .

[7]  Karl R. Popper,et al.  Quantum Mechanics without “The Observer” , 1967 .

[8]  Michael Danos,et al.  The Mathematical Foundations of Quantum Mechanics , 1964 .

[9]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[10]  G. Lochak Has Bell's inequality a general meaning for hidden-variable theories? , 1976 .

[11]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[12]  M. Bunge A Ghost-Free Axiomatization of Quantum Mechanics , 1967 .

[13]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[14]  E. Wigner On Hidden Variables and Quantum Mechanical Probabilities , 1970 .

[15]  Ana María Cetto,et al.  On hidden-variable theories and Bell's inequality , 1972 .

[16]  Paul G. Hoel,et al.  Introduction to Probability Theory , 1972 .

[17]  Leslie E Ballentine,et al.  The statistical interpretation of quantum mechanics , 1970 .

[18]  F. Pipkin Atomic Physics Tests of the Basic Concepts in Quantum Mechanics , 1979 .

[19]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[20]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .