Optical signal modulation is presently done using Si pn junctions which cause phase shifting due to Soref effect and, put in a Mach-Zehnder configuration, produce interference and generate amplitude modulation. The drawback of pn junctions is the relatively low phase shifting efficiency which consequently inflicts high power consumptions on the electrical driver. An alternative device to pn junctions was developed and consists of introducing capacitive structures within the optical waveguide. The proposed device has the same cross-section foot-print but is much shorter due to improved efficiencies. Typical pn-junctions can generate phase shifts of 60°/mm for the same implantation conditions. The device is made up of crystal Si, a thin SiO2 capacitor dielectric and poly-Si. Benchmarking the two phase shifters with respect to insertion losses, we observe that the proposed device is promising.
Another material exhaustively used in CMOS technologies is Si3N4. In the data-communication bandwidths, the index contrast between Si3N4 (n = 1.95) and SiO2 (n=1.45) is smaller than that with Si (n = 3.5). Thus, nitride waveguides have lower optical mode confinements and are thus less sensitive to insertion losses caused by line edge roughness and wavelength shifting incurred by process variations. Moreover, the temperature induced index variations are 5 times les in Si3N4 than Si. Therefore, the use of nitride to fabricate devices in silicon photonics looks advantageous. However, high speed electro-optic devices are challenging in Si3N4. Consequently, a co-integration of both materials is essential. We developed a fabrication method and associated devices which allow to transfer the signal to and fro Si and Si3N4. We present some devices in each layer to illustrate the benefits.