Halide-Amine Co-Passivated Indium Phosphide Colloidal Quantum Dots in Tetrahedral Shape.

Wet chemical synthesis of covalent III-V colloidal quantum dots (CQDs) has been challenging because of uncontrolled surfaces and a poor understanding of surface-ligand interactions. We report a simple acid-free approach to synthesize highly crystalline indium phosphide CQDs in the unique tetrahedral shape by using tris(dimethylamino) phosphine and indium trichloride as the phosphorus and indium precursors, dissolved in oleylamine. Our chemical analyses indicate that both the oleylamine and chloride ligands participate in the stabilization of tetrahedral-shaped InP CQDs covered with cation-rich (111) facets. Based on density functional theory calculations, we propose that fractional dangling electrons of the In-rich (111) surface could be completely passivated by three halide and one primary amine ligands per the (2×2) surface unit, satisfying the 8-electron rule. This halide-amine co-passivation strategy will benefit the synthesis of stable III-V CQDs with controlled surfaces.

[1]  K. Jensen,et al.  The Unexpected Influence of Precursor Conversion Rate in the Synthesis of III-V Quantum Dots. , 2015, Angewandte Chemie.

[2]  K. Jensen,et al.  The Unexpected Influence of Precursor Conversion Rate for III–V Quantum Dots , 2015 .

[3]  K. Jensen,et al.  Effect of Trace Water on the Growth of Indium Phosphide Quantum Dots , 2015 .

[4]  Z. Hens,et al.  Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots , 2015 .

[5]  S. Billinge,et al.  Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates , 2015 .

[6]  Tae Gun Kim,et al.  Electronic Structure of PbS Colloidal Quantum Dots on Indium Tin Oxide and Titanium Oxide , 2014 .

[7]  Kyungnam Kim,et al.  Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100). , 2014, Journal of the American Chemical Society.

[8]  B. Cossairt,et al.  Investigation of Indium Phosphide Quantum Dot Nucleation and Growth Utilizing Triarylsilylphosphine Precursors , 2014 .

[9]  Jonathan S. Owen,et al.  Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. , 2013, Journal of the American Chemical Society.

[10]  Eunseog Cho,et al.  Modeling on the size dependent properties of InP quantum dots: a hybrid functional study , 2013, Nanotechnology.

[11]  Qiang Zhang,et al.  Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles , 2013, Journal of Nanoparticle Research.

[12]  Yong‐Hyun Kim,et al.  Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability. , 2013, Journal of the American Chemical Society.

[13]  Z. Hens,et al.  A Solution NMR Toolbox for Characterizing the Surface Chemistry of Colloidal Nanocrystals , 2013 .

[14]  M. Bawendi,et al.  Improved precursor chemistry for the synthesis of III-V quantum dots. , 2012, Journal of the American Chemical Society.

[15]  H. Martínez,et al.  InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description. , 2012, Journal of the American Chemical Society.

[16]  Sohee Jeong,et al.  Design and synthesis of photostable multi-shell Cd-free nanocrystal quantum dots for LED applications , 2012 .

[17]  Sohee Jeong,et al.  Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS , 2012 .

[18]  X. W. Sun,et al.  Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light‐Emitting Diodes , 2012, Advanced materials.

[19]  Lee Soon Park,et al.  Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. , 2012, Journal of the American Chemical Society.

[20]  Y. Hwang,et al.  Photoluminescence characteristics of Cd1-xMnxTe single crystals grown by the vertical Bridgman method , 2012, Nanoscale Research Letters.

[21]  U. Pal,et al.  Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors , 2012, Nanoscale Research Letters.

[22]  P. Reiss,et al.  Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability. , 2011, ACS nano.

[23]  S. M. Blinder,et al.  Variational solution for particle in a regular tetrahedron , 2010 .

[24]  M. Silly,et al.  Internal structure of InP/ZnS nanocrystals unraveled by high-resolution soft X-ray photoelectron spectroscopy. , 2010, ACS nano.

[25]  Uri Banin,et al.  Colloidal hybrid nanostructures: a new type of functional materials. , 2010, Angewandte Chemie.

[26]  Uri Banin,et al.  Kolloidale Hybridnanostrukturen: ein neuer Typ von Funktionsmaterialien , 2010 .

[27]  Nayoun Won,et al.  One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[29]  Liang Li,et al.  Economic Synthesis of High Quality InP Nanocrystals Using Calcium Phosphide as the Phosphorus Precursor , 2008 .

[30]  S. Zhang,et al.  Nanotube wires on commensurate InAs surfaces: binding energies, band alignments, and bipolar doping by the surfaces. , 2004, Physical review letters.

[31]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[32]  Jiayu Zhang,et al.  Surface-Related Emission in Highly Luminescent CdSe Quantum Dots , 2003 .

[33]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[34]  Arthur J. Nozik,et al.  Size-Dependent Spectroscopy of InP Quantum Dots , 1997 .

[35]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[36]  C. Goradia,et al.  XPS investigation of anodic oxides grown on p-type InP , 1990 .

[37]  J. H. Thomas,et al.  X‐ray Photoelectron Spectroscopy Analysis of Changes in InP and InGaAs Surfaces Exposed to Various Plasma Environments , 1988 .

[38]  J. J. Habeeb,et al.  Coordination compounds of indium. Part XXXIII. X-Ray photoelectron spectroscopy of neutral and anionic indium halide species , 1977 .

[39]  R. L. Wells,et al.  Dehalosilylation reactions involving E(sime3)3 and Ph2Incl. Synthesis and X-ray structures of [Ph2Ine(SiMe3)2]2 (E = P or As) , 1993 .

[40]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .