Traveling Salesman Problems

[1]  Yannis Manoussakis,et al.  A linear-time algorithm for finding Hamiltonian cycles in tournaments , 1992, Discret. Appl. Math..

[2]  Stephen B. Maurer The King Chicken Theorems , 1980 .

[3]  Hao Li,et al.  Partitioning Vertices of a Tournament into Independent Cycles , 2001, J. Comb. Theory, Ser. B.

[4]  K. B. Reid,et al.  Equitable agendas: agendas ensuring identical sincere and sophisticated voting decisions , 1997 .

[5]  Timothy W. Tillson A Hamiltonian decomposition of K2m*, 2m >= 8 , 1980, J. Comb. Theory B.

[6]  J. Maybee,et al.  Algebraic Multiplicity of the Eigenvalues of a Tournament Matrix , 1992 .

[7]  Abraham P. Punnen,et al.  TSP Heuristics: Domination Analysis and Complexity , 2003, Algorithmica.

[8]  Bezalel Gavish,et al.  Parallel Savings Based Heuristics for the Delivery Problem , 1991, Oper. Res..

[9]  D. R. Fulkerson UPSETS IN ROUND ROBIN TOURNAMENTS , 1965 .

[10]  Branko Grünbaum Antidirected Hamiltonian paths in tournaments , 1971 .

[11]  Chak-Kuen Wong,et al.  Rooted Spanning Trees in Tournaments , 2000, Graphs Comb..

[12]  J. Banks Sophisticated voting outcomes and agenda control , 1984 .

[13]  Roland Häggkvist,et al.  Hamilton Cycles in Oriented Graphs , 1993, Combinatorics, Probability and Computing.

[14]  Carsten Thomassen,et al.  Hamiltonian dicycles avoiding prescribed arcs in tournaments , 1987, Graphs Comb..

[15]  Jørgen Bang-Jensen,et al.  Edge-disjoint in- and out-branchings in tournaments and related path problems , 1991, J. Comb. Theory, Ser. B.

[16]  Adolfo Sánchez-Flores On Tournaments and Their Largest Transitive Subtournaments , 1994, Graphs Comb..

[17]  Barry R. Weingast,et al.  Uncovered Sets and Sophisticated Voting Outcomes with Implications for Agenda Institutions , 1984 .

[18]  Andrew B. Kahng,et al.  Match twice and stitch: a new TSP tour construction heuristic , 2004, Oper. Res. Lett..

[19]  Eitan Zemel Measuring the Quality of Approximate Solutions to Zero-One Programming Problems , 1981, Math. Oper. Res..

[20]  Carsten Thomassen Arc reversals in tournaments , 1988, Discret. Math..

[21]  Peter Avery,et al.  Condition for a tournament score sequence to be simple , 1980, J. Graph Theory.

[22]  K. Brooks Reid Equivalence of n-tournaments via k-path reversals , 1973, Discret. Math..

[23]  Andrew Thomason,et al.  Trees in tournaments , 1991, Comb..

[24]  K. Brooks Reid Every vertex a king , 1982, Discret. Math..

[25]  K. Reid,et al.  On Sets of Arcs Containing No Cycles in a Tournament* , 1969, Canadian Mathematical Bulletin.

[26]  Nicholas R. Miller,et al.  Graph- Theoretical Approaches to the Theory of Voting* , 1977 .

[27]  David Ben-Arieh,et al.  Transformations of generalized ATSP into ATSP , 2003, Oper. Res. Lett..

[28]  Fred W. Glover,et al.  Construction heuristics for the asymmetric TSP , 2001, Eur. J. Oper. Res..

[29]  Alain Guénoche,et al.  New results on the computation of median orders , 1997, Discret. Math..

[30]  Michael Randolph Garey On enumerating tournaments that admit exactly one Hamiltonian circuit , 1972 .

[31]  R. Graham,et al.  A Constructive Solution to a Tournament Problem , 1971, Canadian Mathematical Bulletin.

[32]  Gregory Gutin,et al.  Polynomial approximation algorithms for the TSP and the QAP with a factorial domination number , 2002, Discret. Appl. Math..

[33]  H. Landau On dominance relations and the structure of animal societies: III The condition for a score structure , 1953 .

[34]  T. S. Michael THE RANKS OF TOURNAMENT MATRICES , 1995 .

[35]  Paolo Toth,et al.  Models, relaxations and exact approaches for the capacitated vehicle routing problem , 2002, Discret. Appl. Math..

[36]  Victor Neumann-Lara A Short Proof of a Theorem of Reid and Parker on Tournaments , 1994, Graphs Comb..

[37]  James C. Bean,et al.  A Lagrangian Based Approach for the Asymmetric Generalized Traveling Salesman Problem , 1991, Oper. Res..

[38]  James B. Orlin,et al.  Creating very large scale neighborhoods out of smaller ones by compounding moves , 2006, J. Heuristics.

[39]  Gerhard J. Woeginger,et al.  The Travelling Salesman and the PQ-Tree , 1998, Math. Oper. Res..

[40]  M. Rosenfeld Antidirected Hamiltonian circuits in tournaments , 1974 .

[41]  Brian Alspach,et al.  Cycles of Each Length in Regular Tournaments , 1967, Canadian Mathematical Bulletin.

[42]  Éric D. Taillard,et al.  Parallel iterative search methods for vehicle routing problems , 1993, Networks.

[43]  András Gyárfás,et al.  2-Partition-Transitive Tournaments , 1998, J. Comb. Theory, Ser. B.

[44]  Li Qiao,et al.  Upsets in round robin tournaments , 1983, J. Comb. Theory, Ser. B.

[45]  K. B. Reid,et al.  Majority tournaments: sincere and sophisticated voting decisions under amendment procedure , 1991 .

[46]  George B. Dantzig,et al.  The Truck Dispatching Problem , 1959 .

[47]  Gregory Gutin,et al.  Lin-Kernighan heuristic adaptations for the generalized traveling salesman problem , 2010, Eur. J. Oper. Res..

[48]  Matteo Fischetti,et al.  A new ILP-based refinement heuristic for Vehicle Routing Problems , 2006, Math. Program..

[49]  Ronald L. Graham,et al.  Some NP-complete geometric problems , 1976, STOC '76.

[50]  József Mala On λ-majority voting paradoxes , 1999 .

[51]  Gregory Gutin,et al.  A memetic algorithm for the generalized traveling salesman problem , 2008, Natural Computing.

[52]  L. Moser,et al.  The Theory of Round Robin Tournaments , 1966 .

[53]  K. B. Reid The relationship between two algorithms for decisions via sophisticated majority voting with an agenda , 1991, Discret. Appl. Math..

[54]  A. Brauer,et al.  On the characteristic roots of tournament matrices , 1968 .

[55]  Lutz Volkmann,et al.  Cycles in multipartite tournaments: results and problems , 2002, Discret. Math..

[56]  Satish Rao,et al.  Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.

[57]  Jean-Claude Bermond,et al.  Cycles in digraphs- a survey , 1981, J. Graph Theory.

[58]  K. B. Reid,et al.  Disproof of a conjecture of Erdös and moser on tournaments , 1970 .

[59]  Liliana Favre,et al.  An Empirical Analysis of Approximation Algorithms for Euclidean TSP , 2009, CSC.

[60]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[61]  L. Moser,et al.  Almost all Tournaments are Irreducible , 1962, Canadian Mathematical Bulletin.

[62]  Herbert E. Vaughan Well-ordered subsets and maximal members of ordered sets , 1952 .

[63]  K. B. Reid Monochromatic reachability, complementary cycles, and single arc reversals in tournaments , 1984 .

[64]  Jean-Claude Bermond,et al.  Une Heuristique pour le Calcul de l'Indice de Transitivité d'un Tournoi , 1976, RAIRO Theor. Informatics Appl..

[65]  Gerhard J. Woeginger,et al.  A study of exponential neighborhoods for the Travelling Salesman Problem and for the Quadratic Assignment Problem , 2000, Math. Program..

[66]  Anthony Wren,et al.  Computer Scheduling of Vehicles from One or More Depots to a Number of Delivery Points , 1972 .

[67]  David Simchi-Levi,et al.  A Location Based Heuristic for General Routing Problems , 1995, Oper. Res..

[68]  Prasad Tetali A Characterization of Unique Tournaments , 1998, J. Comb. Theory, Ser. B.

[69]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[70]  Carsten Thomassen,et al.  Antidirected Hamilton circuits and paths in tournaments , 1973 .

[71]  Robert L. Davis Structures of dominance relations , 1954 .

[72]  Daniele Vigo,et al.  A heuristic algorithm for the asymmetric capacitated vehicle routing problem , 1996 .

[73]  Abraham P. Punnen,et al.  A survey of very large-scale neighborhood search techniques , 2002, Discret. Appl. Math..

[74]  Jørgen Bang-Jensen,et al.  Complementary cycles containing prescribed vertices in tournaments , 2000, Discret. Math..

[75]  Christos H. Papadimitriou,et al.  On Two Geometric Problems Related to the Traveling Salesman Problem , 1984, J. Algorithms.

[76]  Gregory Gutin,et al.  Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP , 2001, Discret. Appl. Math..

[77]  Brian Alspach,et al.  Bypasses in asymmetric digraphs , 1974 .

[78]  Joel Spencer Optimal ranking of tournaments , 1971, Networks.

[79]  Brian Alspach,et al.  Degree frequencies in digraphs and tournaments , 1978, J. Graph Theory.

[80]  Marshall L. Fisher,et al.  A generalized assignment heuristic for vehicle routing , 1981, Networks.

[81]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[82]  Nicholas R. Miller A New Solution Set for Tournaments and Majority Voting: Further Graph- Theoretical Approaches to the Theory of Voting , 1980 .

[83]  Andrew Thomason,et al.  Paths and cycles in tournaments , 1986 .

[84]  K. B. Reid,et al.  Doubly Regular Tournaments are Equivalent to Skew Hadamard Matrices , 1972, J. Comb. Theory, Ser. A.

[85]  Gilbert Laporte,et al.  Computational Evaluation Of A Transformation Procedure For The Symmetric Generalized Traveling Salesman Problem , 1999 .

[86]  Lutz Volkmann,et al.  Bypaths in Tournaments , 1997, Discret. Appl. Math..

[87]  G. Chartrand,et al.  Graphs with Forbidden Subgraphs , 1971 .

[88]  Luca Trevisan,et al.  When Hamming meets Euclid: the approximability of geometric TSP and MST (extended abstract) , 1997, STOC '97.

[89]  Keld Helsgaun,et al.  General k-opt submoves for the Lin–Kernighan TSP heuristic , 2009, Math. Program. Comput..

[90]  G. Clarke,et al.  Scheduling of Vehicles from a Central Depot to a Number of Delivery Points , 1964 .

[91]  George Szekeres,et al.  On a Problem of Schutte and Erdos , 1965 .

[92]  Gregory Gutin,et al.  Anti-matroids , 2002, Oper. Res. Lett..

[93]  J. C. Bean,et al.  An efficient transformation of the generalized traveling salesman problem , 1993 .

[94]  Leslie E. Trotter,et al.  On the capacitated vehicle routing problem , 2003, Math. Program..

[95]  Stéphan Thomassé,et al.  Oriented Hamiltonian Paths in Tournaments: A Proof of Rosenfeld's Conjecture , 2000, J. Comb. Theory, Ser. B.

[96]  Samir Khuller,et al.  z-Approximations , 2001, J. Algorithms.

[97]  Bryan L. Shader,et al.  On tournament matrices , 1992 .

[98]  Gregory Gutin,et al.  Cycles and paths in semicomplete multipartite digraphs, theorems, and algorithms: a survey , 1995, J. Graph Theory.

[99]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..