In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope

The mechanical properties of individual tungsten oxide (WO3) nanowires, directly grown onto tungsten scanning tunneling microscopy tips, have been investigated by a custom-built in situ transmission electron microscopy (TEM) measurement system. Young’s modulii (E) of the individual WO3 nanowires were measured with the assistance of electric-induced mechanical resonance. The results indicate that E basically keeps constant at diameter larger than 30nm, while it largely increases with decreasing diameter when diameter becomes smaller than 30nm. This diameter dependence is attributed to the lower defect density in nanowires with smaller diameter, as imaged by in situ TEM.

[1]  Gregory J. Wagner,et al.  Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside a scanning electron microscope , 2002 .

[2]  Enge Wang,et al.  Field emission of individual carbon nanotube with in situ tip image and real work function , 2005 .

[3]  N. C. MacDonald,et al.  Five parametric resonances in a microelectromechanical system , 1998, Nature.

[4]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[5]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[6]  D. Mandler,et al.  “Writing–Reading–Erasing” on Tungsten Oxide Films Using the Scanning Electrochemical Microscope , 2000 .

[7]  Pu-Xian Gao,et al.  Measuring the Work Function at a Nanobelt Tip and at a Nanoparticle Surface , 2003 .

[8]  Jie Liu,et al.  Tungsten Oxide Nanowires on Tungsten Substrates , 2002 .

[9]  Zhengwei Pan,et al.  Work function at the tips of multiwalled carbon nanotubes , 2001 .

[10]  Y. Bando,et al.  Synthesis of tungsten oxide nanowires , 2003 .

[11]  Fu-Rong Chen,et al.  WO3−x nanowires based electrochromic devices , 2006 .

[12]  Dmitri Golberg,et al.  Quasi‐Aligned Single‐Crystalline W18O49 Nanotubes and Nanowires , 2003 .

[13]  Stephane Evoy,et al.  Diameter-dependent electromechanical properties of GaN nanowires. , 2006, Nano letters.

[14]  Yong Ding,et al.  Three‐Dimensional Tungsten Oxide Nanowire Networks , 2005 .

[15]  Jun Chen,et al.  Growth and field-emission property of tungsten oxide nanotip arrays , 2005 .

[16]  S. Arepalli,et al.  Transmission-electron-microscopic studies of mechanical properties of single-walled carbon nanotube bundles , 2004 .

[17]  Bernard Nysten,et al.  Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy , 2004 .

[18]  Enge Wang,et al.  Dual-mode mechanical resonance of individual ZnO nanobelts , 2003 .

[19]  Laszlo B. Kish,et al.  Semiconductor gas sensors based on nanostructured tungsten oxide , 2001 .

[20]  Haiyi Liang,et al.  Size-dependent elasticity of nanowires: Nonlinear effects , 2005 .