A Computational Method for Optimal L-Q Regulation with Simultaneous Disturbance Decoupling
暂无分享,去创建一个
[1] W. Wonham. Linear Multivariable Control: A Geometric Approach , 1974 .
[2] P. Dooren. The generalized eigenstructure problem in linear system theory , 1981 .
[3] Gene H. Golub,et al. Matrix computations , 1983 .
[4] Huibert Kwakernaak,et al. Linear Optimal Control Systems , 1972 .
[5] José Claudio Geromel,et al. Optimal decentralized control of dynamic systems , 1982, Autom..
[6] Joe H. Chow,et al. A Feedback Descent Method for Solving Constrained LQG Control Problems , 1992, 1992 American Control Conference.
[7] Basílio E. A. Milani. On the computation of the optimal constant output feedback gains for large-scale linear time-invariant systems subjected to control structure constraints , 1980 .
[9] P. Makila,et al. Computational methods for parametric LQ problems--A survey , 1987 .
[10] A. Laub,et al. Computation of supremal (A,B)-invariant and controllability subspaces , 1977 .
[11] B. Anderson,et al. Optimal control: linear quadratic methods , 1990 .
[12] Hannu T. Toivonen,et al. Newton's method for solving parametric linear quadratic control problems , 1987 .
[13] A. Linnemann. A Condensed Form for Disturbance Decoupling with Simultaneous Pole Placement Using State Feedback , 1987 .
[14] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[15] Fotis N. Koumboulis,et al. Disturbance rejection of left-invertible systems , 1992, Autom..