Boundary Behavior of Viscous Fluids: Influence of Wall Roughness and Friction-driven Boundary Conditions

We consider a family of solutions to the evolutionary Navier–Stokes system supplemented with the complete slip boundary conditions on domains with rough boundaries. We give a complete description of the asymptotic limit by means of Γ-convergence arguments, and identify a general class of boundary conditions.

[1]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[2]  Denise Chenais,et al.  On the existence of a solution in a domain identification problem , 1975 .

[3]  Didier Bresch,et al.  Effect of rugosity on a flow governed by stationary Navier-Stokes equations , 2001 .

[4]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[5]  H. Sohr,et al.  The Navier-Stokes Equations: An Elementary Functional Analytic Approach , 2012 .

[6]  G. Bouchitté,et al.  Cahn and Hilliard fluid on an oscillating boundary , 1994 .

[7]  The Stokes equations with Fourier boundary conditions on a wall with asperities , 2001 .

[8]  J. Nitsche On Korn's second inequality , 1981 .

[9]  R. Temam Navier-Stokes Equations , 1977 .

[10]  Integral representation for a class of $C^1$-convex functionals , 1992, funct-an/9205002.

[11]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[12]  M. E. Bogovskii Solution of Some Vector Analysis Problems connected with Operators div and grad , 1980 .

[13]  Juan Casado-Díaz,et al.  Why viscous fluids adhere to rugose walls: A mathematical explanation , 2003 .

[14]  Willi Jäger,et al.  On the Roughness-Induced Effective Boundary Conditions for an Incompressible Viscous Flow , 2001 .

[15]  D. Gérard-Varet,et al.  Wall laws for fluid flows at a boundary with random roughness , 2006, math/0606768.

[16]  A. Brillard,et al.  Relaxed Dirichlet problem and shape optimization within the linear elasticity framework , 2004 .

[17]  Γ-convergence of functionals on divergence-free fields , 2007 .

[18]  A. A. Darhuber,et al.  Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  M. Hillairet Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow , 2007 .

[20]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[21]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[22]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[23]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[24]  D. Bucur,et al.  On the Asymptotic Limit of Flows Past a Ribbed Boundary , 2008 .

[25]  Roger Temam,et al.  Qualitative Properties of Navier-Stokes Equations , 1978 .

[26]  Kumbakonam R. Rajagopal,et al.  Chapter 5 – Mathematical Issues Concerning the Navier–Stokes Equations and Some of Its Generalizations , 2005 .

[27]  Anneliese Defranceschi,et al.  Limits of minimum problems with convex obstacles for vector valued functions , 1994 .

[28]  Sandra M. Troian,et al.  Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular-scale simulations versus continuum predictions , 2006, Journal of Fluid Mechanics.

[29]  Dorin Bucur,et al.  On the asymptotic limit of the Navier–Stokes system on domains with rough boundaries , 2008 .