Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle

Two critical limitations for using current satellite sensors in real-time crop management are the lack of imagery with optimum spatial and spectral resolutions and an unfavorable revisit time for most crop stress-detection applications. Alternatives based on manned airborne platforms are lacking due to their high operational costs. A fundamental requirement for providing useful remote sensing products in agriculture is the capacity to combine high spatial resolution and quick turnaround times. Remote sensing sensors placed on unmanned aerial vehicles (UAVs) could fill this gap, providing low-cost approaches to meet the critical requirements of spatial, spectral, and temporal resolutions. This paper demonstrates the ability to generate quantitative remote sensing products by means of a helicopter-based UAV equipped with inexpensive thermal and narrowband multispectral imaging sensors. During summer of 2007, the platform was flown over agricultural fields, obtaining thermal imagery in the 7.5-13-mum region (40-cm resolution) and narrowband multispectral imagery in the 400-800-nm spectral region (20-cm resolution). Surface reflectance and temperature imagery were obtained, after atmospheric corrections with MODTRAN. Biophysical parameters were estimated using vegetation indices, namely, normalized difference vegetation index, transformed chlorophyll absorption in reflectance index/optimized soil-adjusted vegetation index, and photochemical reflectance index (PRI), coupled with SAILH and FLIGHT models. As a result, the image products of leaf area index, chlorophyll content (C ab), and water stress detection from PRI index and canopy temperature were produced and successfully validated. This paper demonstrates that results obtained with a low-cost UAV system for agricultural applications yielded comparable estimations, if not better, than those obtained by traditional manned airborne sensors.

[1]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[2]  M. S. Moran,et al.  Opportunities and limitations for image-based remote sensing in precision crop management , 1997 .

[3]  P. Boissard,et al.  Reflectance, green leaf area index and ear hydric status of wheat from anthesis until maturity , 1993 .

[4]  Pablo J. Zarco-Tejada,et al.  Spatial variability of crop water stress in an olive grove with high-spatial thermal remote sensing imagery. , 2005 .

[5]  Curtis E. Woodcock,et al.  The effect of spatial resolution on the ability to monitor the status of agricultural lands , 1997 .

[6]  M. S. Rasmussen Assessment of millet yields and production in northern Burkina Faso using integrated NDVI from the AVHRR. , 1992 .

[7]  Pablo J. Zarco-Tejada,et al.  Chlorophyll content estimation of Boreal conifers using hyperspectral remote sensing , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[8]  H. Fischer,et al.  Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends , 2002 .

[9]  J. A. Schell,et al.  Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor] , 1973 .

[10]  D. Quattrochi,et al.  Land surface temperature retrieval techniques and applications. , 2003 .

[11]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[12]  Pablo J. Zarco-Tejada,et al.  Monitoring yield and fruit quality parameters in open-canopy tree crops under water stress. Implications for ASTER , 2007 .

[13]  Antonio Moccia,et al.  1st Mini-UAV Integrated Hyperspectral/Thermal Electro-Optical Payload for Forest Fire Risk Management , 2007 .

[14]  Pablo J. Zarco-Tejada,et al.  Canopy water content estimates with AVIRIS imagery and MODIS reflectance products , 2006, SPIE Optics + Photonics.

[15]  Stephen E. Dunagan,et al.  Remote command-and-control of imaging payloads using commercial off-the-shelf technology , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[16]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[17]  S. Idso,et al.  Canopy temperature as a crop water stress indicator , 1981 .

[18]  N. Goel,et al.  Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies , 2004 .

[19]  T. Faurtyot Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study , 1997 .

[20]  Stephan J. Maas,et al.  Combining remote sensing and modeling for estimating surface evaporation and biomass production , 1995 .

[21]  James H. Everitt,et al.  Use of Remote Sensing for Detecting and Mapping Leafy Spurge (Euphorbia esula) , 1995, Weed Technology.

[22]  P. Zarco-Tejadaa,et al.  Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops , 2004 .

[23]  S. Ustin,et al.  Mapping nonnative plants using hyperspectral imagery , 2003 .

[24]  M. P. Reynolds,et al.  Evaluating physiological traits to complement empirical selection for wheat in warm environments , 2004, Euphytica.

[25]  D. Roberts,et al.  Deriving Water Content of Chaparral Vegetation from AVIRIS Data , 2000 .

[26]  S. Ustin,et al.  Estimating Vegetation Water content with Hyperspectral data for different Canopy scenarios: Relationships between AVIRIS and MODIS Indexes , 2006 .

[27]  William D. Philpot,et al.  Yellowness index: An application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation , 1999 .

[28]  T. Malthus,et al.  High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by Botrytis fabae , 1993 .

[29]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[30]  Pablo J. Zarco-Tejada,et al.  Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Rosamaria Salvatori,et al.  Mediterranean vegetation analysis by multi-temporal satellite sensor data , 1997 .

[32]  J. Mayer,et al.  Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat , 1982 .

[33]  James A. Brass,et al.  Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support , 2004 .

[34]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[35]  Hugo de Vries,et al.  Bastardierung als Ursache der Apogamie im Pflanzenreich , 1919 .

[36]  Peter R. J. North,et al.  Three-dimensional forest light interaction model using a Monte Carlo method , 1996, IEEE Trans. Geosci. Remote. Sens..

[37]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[38]  Pablo J. Zarco-Tejada,et al.  Detection of water stress in an olive orchard with thermal remote sensing imagery , 2006 .

[39]  Mario A. Gomarasca,et al.  Elements of Photogrammetry , 2009 .

[40]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[41]  Robert O. Green,et al.  Temporal and spatial patterns in vegetation and atmospheric properties from AVIRIS , 1997 .

[42]  Pablo J. Zarco-Tejada,et al.  Using hyperspectral remote sensing to map grape quality in 'Tempranillo' vineyards affected by iron deficiency chlorosis , 2007 .

[43]  E. Fereres,et al.  Deficit irrigation for reducing agricultural water use. , 2006, Journal of experimental botany.

[44]  Pablo J. Zarco-Tejada,et al.  Assessing Canopy PRI for Water Stress detection with Diurnal Airborne Imagery , 2008 .

[45]  J. Everaerts PEGASUS - Bridging the gap between airborne and spaceborne remote sensing , 2005 .

[46]  Kazunobu Ishii,et al.  Remote-sensing Technology for Vegetation Monitoring using an Unmanned Helicopter , 2005 .

[47]  A. Moccia,et al.  An Integrated Electro-Optical Payload System for Forest Fires Monitoring from Airborne Platform , 2007, 2007 IEEE Aerospace Conference.

[48]  Gary E. Varvel,et al.  Light Reflectance Compared with Other Nitrogen Stress Measurements in Corn Leaves , 1994 .

[49]  Janne Heikkilä,et al.  A four-step camera calibration procedure with implicit image correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[50]  Luciano Mateos,et al.  Non-destructive measurement of leaf area in olive (Olea europaea L.) trees using a gap inversion method , 1995 .

[51]  J. Salisbury,et al.  Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .

[52]  Lei Tian,et al.  An autonomous helicopter system for aerial image collection , 2007 .

[53]  Dorota A. Grejner-Brzezinska,et al.  On Improving Navigation Accuracy of GPS/INS Systems , 2005 .

[54]  H. Eisenbeiss,et al.  Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru , 2007 .

[55]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[56]  M. Potdar Sorghum yield modelling based on crop growth parameters determined from visible and near-IR channel NOAA AVHRR data , 1993 .

[57]  James H. Everitt,et al.  Using Satellite Data to Map False Broomweed (Ericameria austrotexana) Infestations on South Texas Rangelands , 1993, Weed Technology.

[58]  Claudia M. Castaneda,et al.  Estimating Canopy Water Content of Chaparral Shrubs Using Optical Methods , 1998 .

[59]  E. Milton,et al.  The use of the empirical line method to calibrate remotely sensed data to reflectance , 1999 .

[60]  S. Ustin,et al.  Estimating leaf biochemistry using the PROSPECT leaf optical properties model , 1996 .

[61]  Jan G. P. W. Clevers,et al.  A simplified approach for yield prediction of sugar beet based on optical remote sensing data , 1997 .

[62]  Jan G. P. W. Clevers,et al.  A framework for monitoring crop growth by combining directional and spectral remote sensing information. , 1994 .

[63]  S. Idso,et al.  Wheat canopy temperature: A practical tool for evaluating water requirements , 1977 .

[64]  John R. Miller,et al.  Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy , 2005 .

[65]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[66]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[67]  James E. McMurtrey,et al.  Relationship of spectral data to grain yield variation , 1980 .

[68]  John R. Miller,et al.  Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[69]  Hamza Erol,et al.  A multispectral classification algorithm for classifying parcels in an agricultural region , 1996 .

[70]  Pablo J. Zarco-Tejada,et al.  Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale , 2005 .

[71]  P. Agouris,et al.  Automated Aerotriangulation Using Multiple Image Multipoint Matching , 1996 .

[72]  Stanley R. Herwitz,et al.  Collection of Ultra High Spatial and Spectral Resolution Image Data over California Vineyards with a Small UAV , 2003 .

[73]  Pablo J. Zarco-Tejada,et al.  Hyperspectral Remote Sensing of Forest Condition: Estimating Chlorophyll Content in Tolerant Hardwoods , 2003, Forest Science.

[74]  William D. Philpot,et al.  Toward the Discrimination of Manganese, Zinc, Copper, and Iron Deficiency in ‘Bragg’ Soybean Using Spectral Detection Methods , 2000 .