Random Sets as Ill-Perceived Random Variables

The modern theory of random sets was initiated in the seventies, independently by Kendall [30] and Matheron [37] and it has been fruitfully applied in different fields such as economy, stochastic geometry and ill-observed random objects. Roughly speaking, a random set is a random element in a family of subsets of a certain universe. In particular, we can compute the probabilities that a random set hits a given set, or is included in this set, or yet includes it. In parallel and quite independently of this literature, random sets appear (but for the name) in the late sixties in the pioneering works of Dempster [16], who considers multimappings from a probability space to another space of interest.

[1]  Inés Couso,et al.  Random sets as imprecise random variables , 2005 .

[2]  Hung T. Nguyen,et al.  Uncertainty Models for Knowledge-Based Systems; A Unified Approach to the Measurement of Uncertainty , 1985 .

[3]  Inés Couso,et al.  Relationships Between Possibility Measures and Nested Random Sets , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[4]  Liangjian Hu,et al.  The variance and covariance of fuzzy random variables and their applications , 2001, Fuzzy Sets Syst..

[5]  Didier Dubois,et al.  Formal Representations of Uncertainty , 2010, Decision-making Process.

[6]  Inés Couso,et al.  Higher order models for fuzzy random variables , 2008, Fuzzy Sets Syst..

[7]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[8]  I. Molchanov Theory of Random Sets , 2005 .

[9]  Ines Cousa Blanco Teoría de la probabilidad para datos imprecisos, algunos aspectos , 1999 .

[10]  Pierre Novikoff,et al.  Sur les fonctions implicites mesurables B , 1931 .

[11]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[12]  Inés Couso,et al.  Random intervals as a model for imprecise information , 2005, Fuzzy Sets Syst..

[13]  H. M. Gehman Review: Nicolas Lusin, Leçons sur les Ensembles Analytiques et leurs Applications , 1931 .

[14]  Weiru Liu,et al.  Bridging Jeffrey's Rule, AGM Revision and Dempster Conditioning in the Theory of Evidence , 2011, Int. J. Artif. Intell. Tools.

[15]  Hung T. Nguyen,et al.  On Random Sets and Belief Functions , 1978, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[16]  G. Matheron Random Sets and Integral Geometry , 1976 .

[17]  P. Walley,et al.  A survey of concepts of independence for imprecise probabilities , 2000 .

[18]  S. Bochner,et al.  Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind , 1933 .

[19]  Ronald R. Yager,et al.  Classic Works of the Dempster-Shafer Theory of Belief Functions , 2010, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[20]  Ronald Fagin,et al.  A new approach to updating beliefs , 1990, UAI.

[21]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[22]  Didier Dubois,et al.  On the Variability of the Concept of Variance for Fuzzy Random Variables , 2009, IEEE Transactions on Fuzzy Systems.

[23]  W. Hildenbrand Core and Equilibria of a Large Economy. , 1974 .

[24]  Didier Dubois,et al.  Possibility theory and statistical reasoning , 2006, Comput. Stat. Data Anal..

[25]  Rudolf Kruse,et al.  On the variance of random sets , 1987 .

[26]  Massimo Marinacci,et al.  Random Correspondences as Bundles of Random Variables , 2001 .

[27]  Inés Couso,et al.  Approximations of upper and lower probabilities by measurable selections , 2010, Inf. Sci..

[28]  Jean-Yves Jaffray Bayesian Updating and Belief Functions , 2008, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[29]  Itzhak Gilboa,et al.  Updating Ambiguous Beliefs , 1992, TARK.

[30]  Gert de Cooman,et al.  Supremum Preserving Upper Probabilities , 1999, Inf. Sci..

[31]  R. Kruse,et al.  Statistics with vague data , 1987 .

[32]  Didier Dubois,et al.  Statistical reasoning with set-valued information: Ontic vs. epistemic views , 2014, Int. J. Approx. Reason..

[33]  Luis M. de Campos,et al.  The concept of conditional fuzzy measure , 1990, Int. J. Intell. Syst..

[34]  Inés Couso,et al.  Independence concepts in evidence theory , 2010, Int. J. Approx. Reason..

[35]  Inés Couso,et al.  Imprecise distribution function associated to a random set , 2004, Inf. Sci..

[36]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[37]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[38]  Ralf Körner,et al.  On the variance of fuzzy random variables , 1997, Fuzzy Sets Syst..

[39]  Ilya Molchanov Limit Theorems for Unions of Random Closed Sets , 1993 .

[40]  Didier Dubois,et al.  Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets , 2012, Fuzzy Sets Syst..

[41]  D. Denneberg Non-additive measure and integral , 1994 .

[42]  G. Debreu Integration of correspondences , 1967 .

[43]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[44]  Helmut Prendinger,et al.  Approximate Reasoning , 1997, EPIA.