Identification of weak nonlinearities on damping and stiffness by the continuous wavelet transform

We consider the free response of a nonlinear vibrating system. Using the ridges and skeletons of the continuous wavelet transform, we identify weak nonlinearities on damping and stiffness and estimate their physical parameters. The crucial choice of the son wavelet function is obtained using an optimization technique based on the entropy of the continuous wavelet transform. The method is applied to simulated single-degree-of-freedom systems and multi-degree-of-freedom systems with nonlinearities on damping and stiffness. Experimental validation of the nonlinear identification and parameter estimation method is presented. The experimental system is a clamped beam with nonlinearities on damping and stiffness and these nonlinearities are identified and quantified from a displacement sensor.

[1]  Jing Lin,et al.  Feature Extraction Based on Morlet Wavelet and its Application for Mechanical Fault Diagnosis , 2000 .

[2]  P. D. McFadden,et al.  A review of time-frequency methods for structural vibration analysis , 2003 .

[3]  J. Slavič,et al.  Damping identification using a continuous wavelet transform: application to real data , 2003 .

[4]  Rong-Juin Shyu,et al.  A SPECTRAL METHOD FOR IDENTIFYING NONLINEAR STRUCTURES , 1994 .

[5]  T. Le,et al.  Continuous wavelet transform for modal identification using free decay response , 2004 .

[6]  Pierre Argoul,et al.  INSTANTANEOUS INDICATORS OF STRUCTURAL BEHAVIOUR BASED ON THE CONTINUOUS CAUCHY WAVELET ANALYSIS , 2003 .

[7]  Vimal Singh,et al.  Perturbation methods , 1991 .

[8]  Massimo Ruzzene,et al.  Identification of nonlinear damping mechanisms using the wavelet transform , 1998 .

[9]  Cyril M. Harris,et al.  Shock and vibration handbook , 1976 .

[10]  Massimo Ruzzene,et al.  NATURAL FREQUENCIES AND DAMPINGS IDENTIFICATION USING WAVELET TRANSFORM: APPLICATION TO REAL DATA , 1997 .

[11]  W. Staszewski IDENTIFICATION OF NON-LINEAR SYSTEMS USING MULTI-SCALE RIDGES AND SKELETONS OF THE WAVELET TRANSFORM , 1998 .

[12]  Jann N. Yang,et al.  On-line identification of non-linear hysteretic structures using an adaptive tracking technique , 2004 .

[13]  W. Staszewski IDENTIFICATION OF DAMPING IN MDOF SYSTEMS USING TIME-SCALE DECOMPOSITION , 1997 .

[14]  Sami F. Masri,et al.  A Nonparametric Identification Technique for Nonlinear Dynamic Problems , 1979 .

[15]  Massimo Ruzzene,et al.  Validation of two nonlinear system identification techniques using an experimental testbed , 2004 .

[16]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[17]  Chung Bang Yun,et al.  Identification of Linear Structural Dynamic Systems , 1982 .

[18]  Joseph Lardies,et al.  Identification of modal parameters using the wavelet transform , 2002 .

[19]  Michael Feldman,et al.  NON-LINEAR FREE VIBRATION IDENTIFICATION VIA THE HILBERT TRANSFORM , 1997 .

[20]  Ahsan Kareem,et al.  ON THE PRESENCE OF END EFFECTS AND THEIR MELIORATION IN WAVELET-BASED ANALYSIS , 2002 .

[21]  Bruno Torrésani,et al.  Analyse continue par ondelettes , 1995 .

[22]  R. Reiszig,et al.  N. Bogolioubov et I. Mitropolski, Les méthodes asymptotiques en théorie des oscillations non linéaires. VIII + 518 S. m. 117 Fig. Paris 1962. Gauthier-Villars & Cie. Preis brosch. 60 F . , 1964 .