Correspondence: The fermiology and electron dynamics of trilayer nickelate La$_4$Ni$_3$O$_{10}$

In their paper, Li et al. [Nat. Commun. 8, 704 (2017)], analyse the Fermi surface of the trilayer nickelate La$_4$Ni$_3$O$_{10}$ using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) band structure calculations. The study describes the similarities and differences between the low-energy electronic structure of layered cuprates and nickelates; nonetheless, we find critical inconsistencies between the ARPES and DFT calculations based on a correctly simulated orthorhombic $Bmab$ phase of La$_4$Ni$_3$O$_{10}$, which refute the main claim that "La$_4$Ni$_3$O$_{10}$ has no pseudogap in the $d_{x^2-y^2}$ band, while it has an extra band of principally $d_{3z^2-r^2}$ orbital character, which presents a low temperature energy gap." We show that orthorhombic La$_4$Ni$_3$O$_{10}$ exhibits no pseudogap and that reconciliation between the ARPES data reported by Li et al. and the DFT band structure requires that La$_4$Ni$_3$O$_{10}$ is monoclinic at low-temperature, indicating it likely undergoes a displacive transition. Only the monoclinic phase exhibits the observed pseudogap.

[1]  J. Mitchell,et al.  Large orbital polarization in a metallic square-planar nickelate , 2017, Nature Physics.

[2]  A. Fedorov,et al.  Anomalous temperature evolution of the electronic structure of FeSe , 2017, 1702.02088.

[3]  A. Bostwick,et al.  Hallmarks of the Mott-metal crossover in the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4 , 2016, Nature Communications.

[4]  W. Pickett,et al.  Charge ordering in Ni 1 + / Ni 2 + nickelates: La 4 Ni 3 O 8 and La 3 Ni 2 O 6 , 2016, 1604.06326.

[5]  J. Mitchell,et al.  Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8 , 2016, Proceedings of the National Academy of Sciences.

[6]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[7]  Y. Okamoto,et al.  Lifshitz metal–insulator transition induced by the all-in/all-out magnetic order in the pyrochlore oxide Cd2Os2O7 , 2015, 1502.00191.

[8]  S. May,et al.  Magnetic Oxide Heterostructures , 2014 .

[9]  T. Devereaux,et al.  Energy gaps in high-transition-temperature cuprate superconductors , 2014, Nature Physics.

[10]  A. Bostwick,et al.  Bilayer splitting and wave functions symmetry in Sr3Ir2O7 , 2014 .

[11]  G. Gu,et al.  Inducing a Lifshitz transition by extrinsic doping of surface bands in the topological crystalline insulator Pb1-xSnxSe. , 2014, Physical review letters.

[12]  S. Chi,et al.  Direct observation of dynamic charge stripes in La2–xSrxNiO4 , 2013, Nature Communications.

[13]  A. Bianconi Shape resonances in superstripes , 2013, Nature Physics.

[14]  M. Casula,et al.  Large temperature dependence of the number of carriers in co-doped BaFe(2)As(2). , 2013, Physical review letters.

[15]  O. Korneta,et al.  Dimensionality-controlled Mott transition and correlation effects in single-layer and bilayer perovskite iridates , 2012, 1210.4141.

[16]  R. Dhaka,et al.  Unusual temperature dependence of band dispersion in Ba(Fe(1-x)Ru(x))2As2 and its consequences for antiferromagnetic ordering. , 2012, Physical review letters.

[17]  A. Kordyuk Iron-based superconductors: Magnetism, superconductivity, and electronic structure (Review Article) , 2012, 1209.0140.

[18]  A. Taleb-Ibrahimi,et al.  Impact of the two Fe unit cell on the electronic structure measured by ARPES in iron pnictides , 2012, 1205.4513.

[19]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[20]  T. Berlijn,et al.  One-Fe versus two-Fe Brillouin zone of Fe-based superconductors: creation of the electron pockets by translational symmetry breaking. , 2011, Physical review letters.

[21]  K. Held,et al.  Pseudogap of metallic layered nickelate R(2-x)Sr(x)NiO4 (R = Nd, Eu) crystals measured using angle-resolved photoemission spectroscopy. , 2010, Physical review letters.

[22]  T. Kondo,et al.  Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates , 2010, 1005.5309.

[23]  Z. Hussain,et al.  Doping dependence of the (π, π) shadow band in La-based cuprates studied by angle-resolved photoemission spectroscopy , 2009, 0911.2245.

[24]  A. Bostwick,et al.  Evidence for a Lifshitz transition in electron-doped iron arsenic superconductors at the onset of superconductivity , 2010 .

[25]  A. Fujimori,et al.  Enhanced superconducting gaps in the trilayer high-temperature Bi2Sr2Ca2Cu3O(10+δ) cuprate superconductor. , 2010, Physical review letters.

[26]  T. Tyson,et al.  Bulk magnetic order in a two-dimensional Ni1+/Ni2+ (d9/d8) nickelate, isoelectronic with superconducting cuprates. , 2010, Physical review letters.

[27]  Chi-Cheng Lee,et al.  Unfolding first-principles band structures. , 2010, Physical review letters.

[28]  J. Chaloupka,et al.  Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. , 2008, Physical review letters.

[29]  J. S. Lee,et al.  Pseudogap dependence of the optical conductivity spectra of Ca3Ru2O7: a possible contribution of the orbital flip excitation. , 2007, Physical review letters.

[30]  M. Lindroos,et al.  Experimental proof of a structural origin for the shadow fermi surface of Bi2Sr2CaCu2O8+delta. , 2006, Physical review letters.

[31]  Z. Hussain,et al.  Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites , 2005, Nature.

[32]  M. Knupfer,et al.  UvA-DARE ( Digital Academic Repository ) Origin of the shadow Fermi surface in Bi-based cuprates , 2004 .

[33]  K. Schwarz,et al.  Solid state calculations using WIEN2k , 2003 .

[34]  M. Knupfer,et al.  Doping dependence of the mass enhancement in (Pb,Bi)2Sr2CaCu2O8 at the antinodal point in the superconducting and normal states. , 2003, Physical review letters.

[35]  T. Noda,et al.  Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors , 2001, Nature.

[36]  J. Bassat,et al.  Influence of oxygen stoichiometry on the electronic properties of La4Ni3O10±δ , 2000 .

[37]  David J. Singh,et al.  An alternative way of linearizing the augmented-plane-wave method , 2000 .

[38]  M. R. Norman,et al.  Phenomenology of the low-energy spectral function in high-T c superconductors , 1998 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  M. Greenblatt,et al.  Electronic Band Structure and Madelung Potential Study of the Nickelates La2NiO4, La3Ni2O7, and La4Ni3O10 , 1996 .

[41]  C. H. Park,et al.  Excitation Gap in the Normal State of Underdoped Bi2Sr2CaCu2O8+δ , 1996, Science.

[42]  Norman,et al.  Electronic excitations in Bi2Sr 2CaCu2O8: Fermi surface, dispersion, and absence of bilayer splitting. , 1995, Physical review letters.

[43]  Allen,et al.  Band gaps and electronic structure of transition-metal compounds. , 1985, Physical review letters.