Morphological quantification of surface roughness

Morphological granulometric moments have proven useful for quantification and classification of image texture. This paper proposes using granulometries to provide a comprehensive description of surface roughness. To support this proposition it demonstrates that granulometric surface description includes much of the information carried by conventional roughness measures. It does so by using granulometric moments as inputs to a linear system to estimate six conventional surface roughness measures. The analysis is based on simulations in the framework of the Boolean-random-function model for surfaces. Features are obtained from both opening and closing granulometries. The granulometries are generated by computationally efficient one-dimensional linear and triangular structuring elements. This permits fast implementation using special-purpose algorithms. Estimators with granulometric inputs are designed on training data and applied to test data to analyze their effectiveness as estimators of conventional roughness measures. This is done for both simulated and real images.

[1]  E. Dougherty,et al.  Size distributions for multivariate morphological granulometries: texture classification and statistical properties , 1997 .

[2]  G. Matheron Random Sets and Integral Geometry , 1976 .

[3]  Nasser Kehtarnavaz,et al.  A Constant-time Algorithm for Erosions/Dilations with Applications to Morphological Texture Feature Computation , 2000, Real Time Imaging.

[4]  Jeff B. Pelz,et al.  Morphological texture-based maximum-likelihood pixel classification based on local granulometric moments , 1992, Pattern Recognit..

[5]  Edward R. Dougherty,et al.  Asymptotic granulometric mixing theorem: Morphological estimation of sizing parameters and mixture proportions , 1998, Pattern Recognit..

[6]  Edward R. Dougherty,et al.  Morphological granulometric estimation of random patterns in the context of parameterized random sets , 2001, Pattern Recognit..

[7]  F. Prêteux,et al.  Off-line signature verification by local granulometric size distributions , 1997 .

[8]  G. Galante,et al.  Surface roughness detection by tool image processing , 1991 .

[9]  Yicheng Lu,et al.  A fiber optic sensor for the measurement of surface roughness and displacement using artificial neural networks , 1996 .

[10]  Paul D. Gader,et al.  Counting white blood cells using morphological granulometries , 2000, J. Electronic Imaging.

[11]  Paul D. Gader,et al.  Non-homothetic granulometric mixing theory with application to blood cell counting , 2001, Pattern Recognit..

[12]  Joël Chadoeuf,et al.  Random Boolean Functions: Non-Parametric Estimation of the Intensity. Application to Soil Surface Roughness , 1994 .

[13]  G. Ayala,et al.  Granulometric moments and corneal endothelium status , 2001, Pattern Recognit..

[14]  Edward R. Dougherty,et al.  Heterogeneous morphological granulometries , 2000, Pattern Recognit..

[15]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[16]  Y. Chen,et al.  Classification of trabecular structure in magnetic resonance images based on morphological granulometries , 1993, Magnetic resonance in medicine.

[17]  James R. Wang,et al.  Estimation of soil moisture and surface roughness parameters from backscattering coefficient , 1993, IEEE Trans. Geosci. Remote. Sens..

[18]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[19]  Jeff B. Pelz,et al.  Morphological granulometric analysis of electrophotographic images--size distribution statistics for process control , 1991 .

[20]  Edward R. Dougherty,et al.  Asymptotic joint normality of the granulometric moments , 2001, Pattern Recognit. Lett..

[21]  Edward R. Dougherty,et al.  Optimal linear granulometric estimation for random sets , 2002, Pattern Recognit..

[22]  E. Dougherty,et al.  Gray-scale morphological granulometric texture classification , 1994 .

[23]  Nasser Kehtarnavaz,et al.  Unsupervised morphological granulometric texture segmentation of digital mammograms , 1999, J. Electronic Imaging.

[24]  Edward R. Dougherty Euclidean gray-scale granulometries: Representation and umbra inducement , 2004, Journal of Mathematical Imaging and Vision.

[25]  E. Dougherty,et al.  Size-distribution estimation in process fluids by ultrasound for particle sizes in the wavelength range , 1993 .