Correlated input reveals coexisting coding schemes in a sensory cortex

[1]  V. Ego-Stengel,et al.  Coding of Apparent Motion in the Thalamic Nucleus of the Rat Vibrissal Somatosensory System , 2012, The Journal of Neuroscience.

[2]  D. Shulz,et al.  Spatial structure of multiwhisker receptive fields in the barrel cortex is stimulus dependent. , 2011, Journal of neurophysiology.

[3]  D. Contreras,et al.  Comprehensive mapping of whisker-evoked responses reveals broad, sharply tuned thalamocortical input to layer 4 of barrel cortex. , 2011, Journal of neurophysiology.

[4]  J. Craig,et al.  Neural Mechanisms of Tactile Motion Integration in Somatosensory Cortex , 2011, Neuron.

[5]  Celine Mateo,et al.  Motor Control by Sensory Cortex , 2010, Science.

[6]  A. Cardona,et al.  An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy , 2010, PLoS biology.

[7]  D. Shulz,et al.  The Matrix: A new tool for probing the whisker-to-barrel system with natural stimuli , 2010, Journal of Neuroscience Methods.

[8]  B. Sakmann,et al.  Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific , 2009, Proceedings of the National Academy of Sciences.

[9]  Jason Wolfe,et al.  Sparse temporal coding of elementary tactile features during active whisker sensation , 2009, Nature Neuroscience.

[10]  Gilles Laurent,et al.  Neural Encoding of Rapidly Fluctuating Odors , 2009, Neuron.

[11]  Vincent Jacob,et al.  Emergent Properties of Tactile Scenes Selectively Activate Barrel Cortex Neurons , 2008, Neuron.

[12]  S. Panzeri,et al.  Diverse and Temporally Precise Kinetic Feature Selectivity in the VPm Thalamic Nucleus , 2008, Neuron.

[13]  Daniel N. Hill,et al.  Texture Coding in the Rat Whisker System: Slip-Stick Versus Differential Resonance , 2008, PLoS biology.

[14]  M. Castro-Alamancos,et al.  Cortical transformation of wide-field (multiwhisker) sensory responses. , 2008, Journal of Neurophysiology.

[15]  S S Hsiao,et al.  The tactile integration of local motion cues is analogous to its visual counterpart , 2008, Proceedings of the National Academy of Sciences.

[16]  M. Andermann,et al.  Embodied Information Processing: Vibrissa Mechanics and Texture Features Shape Micromotions in Actively Sensing Rats , 2008, Neuron.

[17]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[18]  A. Fairhall,et al.  Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex , 2007, PLoS biology.

[19]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[20]  M. Castro-Alamancos,et al.  Spatiotemporal Gating of Sensory Inputs in Thalamus during Quiescent and Activated States , 2005, The Journal of Neuroscience.

[21]  D. Contreras,et al.  Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex , 2005, Nature Neuroscience.

[22]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[23]  J. Touryan,et al.  Spatial Structure of Complex Cell Receptive Fields Measured with Natural Images , 2005, Neuron.

[24]  Vincent Jacob,et al.  Spatiotemporal characteristics of neuronal sensory integration in the barrel cortex of the rat. , 2005, Journal of neurophysiology.

[25]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[26]  M. Hartmann,et al.  Mechanical Characteristics of Rat Vibrissae: Resonant Frequencies and Damping in Isolated Whiskers and in the Awake Behaving Animal , 2003, The Journal of Neuroscience.

[27]  Ben Willmore,et al.  The Receptive-Field Organization of Simple Cells in Primary Visual Cortex of Ferrets under Natural Scene Stimulation , 2003, The Journal of Neuroscience.

[28]  A. Sillito,et al.  Spatial organization and magnitude of orientation contrast interactions in primate V1. , 2002, Journal of neurophysiology.

[29]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[30]  M. Diamond,et al.  Integration of multiple-whisker inputs in rat somatosensory cortex. , 2001, Cerebral cortex.

[31]  R. Born Center-surround interactions in the middle temporal visual area of the owl monkey. , 2000, Journal of neurophysiology.

[32]  S. Shimegi,et al.  Physiological and Anatomical Organization of Multiwhisker Response Interactions in the Barrel Cortex of Rats , 2000, The Journal of Neuroscience.

[33]  H. Sato,et al.  Temporal Characteristics of Response Integration Evoked by Multiple Whisker Stimulations in the Barrel Cortex of Rats , 1999, The Journal of Neuroscience.

[34]  M A Nicolelis,et al.  Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. , 1999, Cerebral cortex.

[35]  F. Ebner,et al.  Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. , 1999, Journal of neurophysiology.

[36]  B. Connors,et al.  Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. , 1999, Journal of neurophysiology.

[37]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[38]  M A Nicolelis,et al.  Nonlinear processing of tactile information in the thalamocortical loop. , 1997, Journal of neurophysiology.

[39]  D J Simons,et al.  Spatial gradients and inhibitory summation in the rat whisker barrel system. , 1996, Journal of neurophysiology.

[40]  John W. Lane,et al.  Marking microelectrode penetrations with fluorescent dyes , 1996, Journal of Neuroscience Methods.

[41]  R. Born,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1993, Nature.

[42]  D. Simons,et al.  Biometric analyses of vibrissal tactile discrimination in the rat , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.

[44]  William Bialek,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[45]  D. Simons Temporal and spatial integration in the rat SI vibrissa cortex. , 1985, Journal of neurophysiology.

[46]  W. Newsome,et al.  Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[48]  P. O. Bishop,et al.  Responses to moving slits by single units in cat striate cortex , 2004, Experimental Brain Research.

[49]  D. Simons,et al.  Angular tuning and velocity sensitivity in different neuron classes within layer 4 of rat barrel cortex. , 2004, Journal of neurophysiology.

[50]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .