Investigating cluster astrophysics and cosmology with cross-correlation of the thermal Sunyaev–Zel'dovich effect and weak lensing

Recent detections of the cross-correlation of the thermal Sunyaev-Zel'dovich (tSZ) effect and weak gravitational lensing (WL) enable unique studies of cluster astrophysics and cosmology. In this work, we present constraints on the amplitude of the non-thermal pressure fraction in galaxy clusters, $\alpha_0$, and the amplitude of the matter power spectrum, $\sigma_8$, using measurements of the tSZ power spectrum from Planck, and the tSZ-WL cross-correlation from Planck and the Red Cluster Sequence Lensing Survey. We fit the data to a semi-analytic model with the covariance matrix using $N$-body simulations. We find that the tSZ power spectrum alone prefers $\sigma_8 \sim 0.85$ and a large fraction of non-thermal pressure ($\alpha_0 \sim 0.2$-$0.3$). The tSZ-WL cross-correlation on the other hand prefers a significantly lower $\sigma_8 \sim 0.6$, and low $\alpha_0 \sim 0.05$. We show that this tension can be mitigated by allowing for a steep slope in the stellar-mass-halo-mass relation, which would cause a reduction of the gas in low-mass halos. In such a model, the combined data prefer $\sigma_8 \sim 0.7$ and $\alpha_0 \sim 0.2$, consistent with predictions from hydrodynamical simulations.

[1]  P. Schneider,et al.  KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.

[2]  D. Spergel,et al.  Future constraints on halo thermodynamics from combined Sunyaev-Zel'dovich measurements , 2017, 1705.05881.

[3]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[4]  Maria E. S. Pereira,et al.  Lensing is Low: Cosmology, Galaxy Formation, or New Physics? , 2016, 1611.08606.

[5]  U. Seljak,et al.  Cosmological constraints from thermal Sunyaev-Zeldovich power spectrum revisited , 2016, 1609.01850.

[6]  L. Miller,et al.  Cross-correlating Planck tSZ with RCSLenS weak lensing: implications for cosmology and AGN feedback , 2016, 1608.07581.

[7]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[8]  S. Flender,et al.  Constraints on the Optical Depth of Galaxy Groups and Clusters , 2016, 1610.08029.

[9]  T. Kitching,et al.  CFHTLenS and RCSLenS Cross-Correlation with Planck Lensing Detected in Fourier and Configuration Space , 2016, 1603.07723.

[10]  T. Kitching,et al.  RCSLenS: The Red Cluster Sequence Lensing Survey , 2016, 1603.07722.

[11]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[12]  Klaus Dolag,et al.  SZ effects in the Magneticum Pathfinder Simulation: Comparison with the Planck, SPT, and ACT results , 2015, 1509.05134.

[13]  Klaus Dolag,et al.  Baryon impact on the halo mass function: Fitting formulae and implications for cluster cosmology , 2015, 1502.07357.

[14]  R. B. Barreiro,et al.  Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.

[15]  Rashid Sunyaev,et al.  Limits on the fluctuating part of y-type distortion monopole from Planck and SPT results , 2015, 1505.00781.

[16]  Naoki Yoshida,et al.  Probing cosmology with weak lensing selected clusters – I. Halo approach and all-sky simulations , 2015, 1504.05672.

[17]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[18]  Martin Kilbinger,et al.  Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.

[19]  A. Moss,et al.  Tension between the power spectrum of density perturbations measured on large and small scales , 2014, 1409.2769.

[20]  G. Hinshaw,et al.  Probing the diffuse baryon distribution with the lensing-tSZ cross-correlation , 2014, 1404.4808.

[21]  G. Hinshaw,et al.  Dissecting the thermal Sunyaev-Zeldovich-gravitational lensing cross-correlation with hydrodynamical simulations , 2014, 1412.6051.

[22]  N. Battaglia,et al.  DECONSTRUCTING THERMAL SUNYAEV–ZEL’DOVICH—GRAVITATIONAL LENSING CROSS-CORRELATIONS: IMPLICATIONS FOR THE INTRACLUSTER MEDIUM , 2014, 1412.5593.

[23]  Adrian T. Lee,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1409.0850.

[24]  L. Waerbeke,et al.  Weak lensing corrections to tSZ-lensing cross correlation , 2014, 1408.6284.

[25]  M. Lueker,et al.  A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1408.3161.

[26]  Daisuke Nagai,et al.  HYDRODYNAMIC SIMULATION OF NON-THERMAL PRESSURE PROFILES OF GALAXY CLUSTERS , 2014, 1404.4636.

[27]  T. Kitayama Cosmological and Astrophysical Implications of the Sunyaev-Zel'dovich Effect , 2014, 1404.0870.

[28]  J. Schaye,et al.  The thermal Sunyaev–Zel'dovich effect power spectrum in light of Planck , 2013, 1312.5341.

[29]  David N. Spergel,et al.  Detection of thermal SZ-CMB lensing cross-correlation in Planck nominal mission data , 2013, 1312.4525.

[30]  G. Hinshaw,et al.  Detection of warm and diffuse baryons in large scale structure from the cross-correlation of gravitational lensing and the thermal Sunyaev-Zeldovich effect , 2013, 1310.5721.

[31]  D. Munshi,et al.  Cross-correlating Sunyaev–Zel’dovich and weak lensing maps , 2011, 1111.5010.

[32]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: cosmological parameters from three seasons of data , 2013, 1301.0824.

[33]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data , 2013, 1301.0816.

[34]  E. Leitch,et al.  SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope , 2012, Other Conferences.

[35]  G. W. Pratt,et al.  Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.

[36]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[37]  J. R. Bond,et al.  ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM , 2011, 1109.3711.

[38]  Edward J. Wollack,et al.  OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS , 2011 .

[39]  Masamune Oguri,et al.  Combining cluster observables and stacked weak lensing to probe dark energy: Self-calibration of systematic uncertainties , 2010, 1010.0744.

[40]  H. Trac,et al.  TEMPLATES FOR THE SUNYAEV–ZEL’DOVICH ANGULAR POWER SPECTRUM , 2010, 1006.2828.

[41]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[42]  Jonas Zmuidzinas,et al.  Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V , 2016 .

[43]  T. Nishimichi,et al.  Combining perturbation theories with halo models , 2010, 1009.0597.

[44]  M. Galeazzi,et al.  EFFECT OF METALLICITY ON X-RAY EMISSION FROM THE WARM-HOT INTERGALACTIC MEDIUM , 2010, 1007.3274.

[45]  Edward J. Wollack,et al.  OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS , 2010, 1007.0290.

[46]  M. Halpern,et al.  ACTPol: a polarization-sensitive receiver for the Atacama Cosmology Telescope , 2010, Astronomical Telescopes + Instrumentation.

[47]  D. Nagai,et al.  IMPACT OF CLUSTER PHYSICS ON THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2010, 1006.1945.

[48]  J. R. Bond,et al.  SIMULATIONS OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM WITH ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1003.4256.

[49]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[50]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[51]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[52]  K. Koyama,et al.  Scale dependence of halo bispectrum from non-Gaussian initial conditions in cosmological N-body simulations , 2009, 0911.4768.

[53]  Jeremiah P. Ostriker,et al.  SIMULATIONS OF THE MICROWAVE SKY , 2009, 0908.0540.

[54]  Masanori Sato,et al.  SIMULATIONS OF WIDE-FIELD WEAK LENSING SURVEYS. I. BASIC STATISTICS AND NON-GAUSSIAN EFFECTS , 2009, 0906.2237.

[55]  Y. Jing,et al.  Modeling Nonlinear Evolution of Baryon Acoustic Oscillations: Convergence Regime of $N$-body Simulations and Analytic Models , 2008, 0810.0813.

[56]  P. Schneider,et al.  Ray-tracing through the Millennium Simulation: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing , 2008, 0809.5035.

[57]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[58]  D. Zaritsky,et al.  A Census of Baryons in Galaxy Clusters and Groups , 2007, Proceedings of the International Astronomical Union.

[59]  D. Nagai,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[60]  L. Moscardini,et al.  The Sunyaev–Zel'dovich effects from a cosmological hydrodynamical simulation: large-scale properties and correlation with the soft X-ray signal , 2007, astro-ph/0701680.

[61]  D. Munshi,et al.  Cosmology with weak lensing surveys , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[62]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[63]  A. Babul,et al.  A Simple and Accurate Model for Intracluster Gas , 2005, astro-ph/0504334.

[64]  J. Carlstrom,et al.  Cosmology with the Sunyaev-Zel'dovich Effect , 2002, astro-ph/0208192.

[65]  E. Komatsu,et al.  The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters , 2002, astro-ph/0205468.

[66]  E. Komatsu,et al.  Universal gas density and temperature profile , 2001, astro-ph/0106151.

[67]  Y. Mellier,et al.  Numerical study of the statistical properties of the lensing excursion angles , 2001, astro-ph/0101333.

[68]  L. Waerbeke Noise properties of gravitational lens mass reconstruction , 1999, astro-ph/9909160.

[69]  M. White,et al.  A New Algorithm for Computing Statistics of Weak Lensing by Large-Scale Structure , 1999, astro-ph/9909165.

[70]  E. Komatsu,et al.  Sunyaev-Zeldovich Fluctuations from Spatial Correlations between Clusters of Galaxies , 1999, The Astrophysical journal.

[71]  M. Birkinshaw,et al.  The Sunyaev-Zel’dovich Effect , 1998, astro-ph/9808050.

[72]  S. Nozawa,et al.  Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies. IV. Analytic Fitting Formula for the Numerical Results , 1999, astro-ph/9912008.

[73]  S. Nozawa,et al.  Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies. II. Inclusion of Peculiar Velocities , 1998 .

[74]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[75]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[76]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[77]  A. Fowler Infrared detectors and instrumentation for astronomy : 18-21 April 1995, Orlando, Florida , 1995 .

[78]  S. Cole,et al.  Sunyaev–Zel'dovich fluctuations in the cold dark matter scenario , 1988 .

[79]  Y. Zel’dovich,et al.  The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .