A Michigan-like immune-inspired framework for performing independent component analysis over Galois fields of prime order

In this work, we present a novel bioinspired framework for performing ICA over finite (Galois) fields of prime order P. The proposal is based on a state-of-the-art immune-inspired algorithm, the cob-aiNet[C], which is employed to solve a combinatorial optimization problem - associated with a minimal entropy configuration - adopting a Michigan-like population structure. The simulation results reveal that the strategy is capable of reaching a performance similar to that of standard methods for lower-dimensional instances with the advantage of also handling scenarios with an elevated number of sources.

[1]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[2]  Arie Yeredor,et al.  ICA over finite fields - Separability and algorithms , 2012, Signal Process..

[3]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[4]  Fernando José Von Zuben,et al.  A Concentration-Based Artificial Immune Network for Multi-objective Optimization , 2011, EMO.

[5]  Jose C. Principe,et al.  Information Theoretic Learning - Renyi's Entropy and Kernel Perspectives , 2010, Information Theoretic Learning.

[6]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[7]  Jerne Nk Towards a network theory of the immune system. , 1974 .

[8]  Fernando José Von Zuben,et al.  A Concentration-based Artificial Immune Network for continuous optimization , 2010, IEEE Congress on Evolutionary Computation.

[9]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[10]  Carsten Witt,et al.  Bioinspired Computation in Combinatorial Optimization , 2010, Bioinspired Computation in Combinatorial Optimization.

[11]  Arie Yeredor,et al.  Independent Component Analysis Over Galois Fields of Prime Order , 2011, IEEE Transactions on Information Theory.

[12]  Arie Yeredor,et al.  ICA in Boolean XOR Mixtures , 2007, ICA.

[13]  Frank Dietrich,et al.  Robust Signal Processing for Wireless Communications , 2007 .

[14]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[15]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[16]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[17]  Fabrício Olivetti de França,et al.  On the diversity mechanisms of opt-aiNet: A comparative study with fitness sharing , 2010, IEEE Congress on Evolutionary Computation.

[18]  Everton Z. Nadalin,et al.  An immune-inspired information-theoretic approach to the problem of ICA over a Galois field , 2011, 2011 IEEE Information Theory Workshop.

[19]  Fabrício Olivetti de França,et al.  A Concentration-based Artificial Immune Network for combinatorial optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[20]  Günter Rudolph,et al.  Convergence of evolutionary algorithms in general search spaces , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[21]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[22]  Thomas Schürmann Bias analysis in entropy estimation , 2004 .

[23]  Hugues Bersini,et al.  Revisiting Idiotypic Immune Networks , 2003, ECAL.

[24]  Rudolf Lide,et al.  Finite fields , 1983 .

[25]  Leandro Nunes de Castro,et al.  Fundamentals of Natural Computing - Basic Concepts, Algorithms, and Applications , 2006, Chapman and Hall / CRC computer and information science series.

[26]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[27]  Harold W. Gutch,et al.  ICA over Finite Fields , 2010, LVA/ICA.

[28]  A. Carlton On the bias of information estimates. , 1969 .

[29]  Frank Neumann,et al.  Bioinspired computation in combinatorial optimization: algorithms and their computational complexity , 2010, GECCO '12.

[30]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[31]  William C. Waterhouse,et al.  How often do determinants over finite fields vanish? , 1987, Discret. Math..

[32]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[33]  Nathalie Delfosse,et al.  Adaptive blind separation of independent sources: A deflation approach , 1995, Signal Process..

[34]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .