A port-Hamiltonian approach to modeling and interconnections of canal systems

We show how the port-Hamiltonian formulation of distributed parameter systems, which incorporates energy flow through the boundary of the spatial domain of the system, can be used to model networks of canals and study interconnections of such systems. We first formulate fluid flow with 1-d spatial variable whose dynamics are given by the well-known shallow water equations, with respect to a Stokes-Dirac structure, and then consider a slightly more complicated case where we have a modified (a non-constant) Stokes-Dirac structure. We also explore the existence of Casimir functions for such systems and highlight their implications on control of fluid dynamical systems.