Modeling and Generating Multivariate Time Series with Arbitrary Marginals Using a Vector Autoregress
暂无分享,去创建一个
[1] A. Cohen. An Introduction to Probability Theory and Mathematical Statistics , 1979 .
[2] M. E. Johnson,et al. A Family of Distributions for Modelling Non‐Elliptically Symmetric Multivariate Data , 1981 .
[3] A. Genz. Statistics Applications of Subregion Adaptive Multiple Numerical Integration , 1992 .
[4] R. Clemen,et al. Correlations and Copulas for Decision and Risk Analysis , 1999 .
[5] W. Whitt. Bivariate Distributions with Given Marginals , 1976 .
[6] E. Blum. Numerical analysis and computation theory and practice , 1972 .
[7] Averill M. Law,et al. Simulation Modeling and Analysis , 1982 .
[8] Christoph W. Ueberhuber,et al. Numerical Integration on Advanced Computer Systems , 1994, Lecture Notes in Computer Science.
[9] R. V. M. Zahar. Approximation and Computation: A Festschrift in Honor of Walter Gautschi , 1994 .
[10] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[11] E. Lehmann. Elements of large-sample theory , 1998 .
[12] R.Thomas Willemain,et al. A method to generate autocorrelated uniform random numbers , 1993 .
[13] Terje O. Espelid,et al. Error estimation in automatic quadrature routines , 1991, TOMS.
[14] Song Wheyming Tina,et al. Generating pseudo-random time series with specified marginal distributions , 1996 .
[15] E. Masry,et al. On the reconstruction of the covariance of stationary Gaussian processes observed through zero-memory nonlinearities , 1978, IEEE Trans. Inf. Theory.
[16] Barry L. Nelson,et al. Automatic modeling of file system workloads using two-level arrival processes , 1998, TOMC.
[17] Barry L. Nelson,et al. Numerical Methods for Fitting and Simulating Autoregressive-to-Anything Processes , 1998, INFORMS J. Comput..
[18] Philip Rabinowitz,et al. Perfectly symmetric two-dimensional integration formulas with minimal numbers of points , 1969 .
[19] Philip M. Lurie,et al. An Approximate Method for Sampling Correlated Random Variables From Partially-Specified Distributions , 1998 .
[20] Ian T. Jolliffe,et al. Introduction to Multiple Time Series Analysis , 1993 .
[21] G. C. Tiao,et al. An introduction to multiple time series analysis. , 1993, Medical care.
[22] Shane G. Henderson,et al. Chessboard Distributions and Random Vectors with Specified Marginals and Covariance Matrix , 2002, Oper. Res..
[23] Huifen Chen,et al. Initialization for NORTA: Generation of Random Vectors with Specified Marginals and Correlations , 2001, INFORMS J. Comput..
[24] Barry L. Nelson,et al. Autoregressive to anything: Time-series input processes for simulation , 1996, Oper. Res. Lett..
[25] Ronald Cools,et al. Algorithm 764: Cubpack++: a C++ package for automatic two-dimensional cubature , 1994, TOMS.
[26] Joseph L. Hammond,et al. Generation of Pseudorandom Numbers with Specified Univariate Distributions and Correlation Coefficients , 1975, IEEE Transactions on Systems, Man, and Cybernetics.
[27] David E. Booth,et al. Multivariate statistical inference and applications , 1997 .
[28] David Goldsman,et al. The TES methodology: modeling empirical stationary time series , 1992, WSC '92.
[29] Benjamin Melamed,et al. TES: A Class of Methods for Generating Autocorrelated Uniform Variates , 1991, INFORMS J. Comput..
[30] Barry L. Nelson,et al. Input modeling tools for complex problems , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).
[31] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[32] N. L. Johnson,et al. Systems of frequency curves generated by methods of translation. , 1949, Biometrika.
[33] Charles H. Reilly,et al. Composition for multivariate random vectors , 1994 .
[34] Bill Ravens,et al. An Introduction to Copulas , 2000, Technometrics.