Identification of nonlinear systems using modified particle swarm optimisation: a hydraulic suspension system

This paper presents a novel modified particle swarm optimisation (MPSO) algorithm to identify nonlinear systems. The case of study is a hydraulic suspension system with a complicated nonlinear model. One of the main goals of system identification is to design a model-based controller such as a nonlinear controller using the feedback linearisation. Once the model is identified, the found parameters may be used to design or tune the controller. We introduce a novel mutation mechanism to enhance the global search ability and increase the convergence speed. The MPSO is used to find the optimum values of parameters by minimising the fitness function. The performance of MPSO is compared with genetic algorithm and alternative particle swarm optimisation algorithms in parameter identification. The presented comparisons confirm the superiority of MPSO algorithm in terms of the convergence speed and the accuracy without the premature convergence problem. Furthermore, MPSO is improved to detect any changes of system parameters, which can be used for designing an adaptive controller. Simulation results show the success of the proposed algorithm in tracking time-varying parameters.

[1]  Meiying Ye Parameter Identification of Dynamical Systems Based on Improved Particle Swarm Optimization , 2006 .

[2]  Jung-Shan Lin,et al.  Nonlinear design of active suspensions , 1997 .

[3]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[4]  Alessandro Giua,et al.  Optimal control of hybrid automata : an application to the design of a semiactive suspension ∗ , 2004 .

[5]  Jo Yung Wong,et al.  Theory of ground vehicles , 1978 .

[6]  Hong Gu,et al.  Parameter Identification of Bilinear System Based on Genetic Algorithm , 2007, LSMS.

[7]  Huei Peng,et al.  PRACTICAL ADAPTIVE ROBUST CONTROLLERS FOR ACTIVE SUSPENSIONS , 2000 .

[8]  An-Chyau Huang,et al.  Adaptive sliding control of active suspension systems with uncertain hydraulic actuator dynamics , 2003 .

[9]  Song Xu,et al.  Smoothing Method for Minimax Problems , 2001, Comput. Optim. Appl..

[10]  Timothy Gordon,et al.  A Comparison of Adaptive LQG and Nonlinear Controllers for Vehicle Suspension Systems , 1991 .

[11]  Jan Swevers,et al.  Robust linear control of an active suspension on a quarter car test-rig , 2005 .

[12]  Jiangye Yuan,et al.  A modified particle swarm optimizer with dynamic adaptation , 2007, Appl. Math. Comput..

[13]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[14]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  Wenxin Liu,et al.  Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors , 2008, Eng. Appl. Artif. Intell..

[16]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[17]  Abdel Badie Sharkawy,et al.  Fuzzy and adaptive fuzzy control for the automobiles’ active suspension system , 2005 .

[18]  Kun-Qi Liu,et al.  A Modified Particle Swarm Optimization for Solving Global Optimization Problems , 2006, 2006 International Conference on Machine Learning and Cybernetics.

[19]  Mohammad Mehdi Fateh,et al.  Impedance control of an active suspension system , 2009 .

[20]  Hyun-Chul Sohn,et al.  A Road-Adaptive LQG Control for Semi-Active Suspension Systems , 2001 .

[21]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[22]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[23]  Stephen A. Billings,et al.  A comparison of the backpropagation and recursive prediction error algorithms for training neural networks , 1991 .

[24]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .

[25]  Carla Seatzu,et al.  Optimal control of hybrid automata: design of a semiactive suspension , 2004 .

[26]  Ken Sharman,et al.  Genetic algorithms for maximum likelihood parameter estimation , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[27]  William S. Levine Signal Processing for Control , 2013, Handbook of Signal Processing Systems.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  M. N. Vrahatis,et al.  A New Unconstrained Optimization Method for Imprecise Function and Gradient Values , 1996 .

[30]  B. Turchiano,et al.  Genetic identification of dynamical systems with static nonlinearities , 2001, SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504).

[31]  Mohammad Mehdi Fateh Robust impedance control of a hydraulic suspension system , 2009 .

[32]  Sunan Wang,et al.  Self-organizing genetic algorithm based tuning of PID controllers , 2009, Inf. Sci..

[33]  ChunXia Zhao,et al.  Particle swarm optimization with adaptive population size and its application , 2009, Appl. Soft Comput..

[34]  Junying Chen,et al.  Particle Swarm Optimization with Local Search , 2005, 2005 International Conference on Neural Networks and Brain.

[35]  Rasmus K. Ursem,et al.  Parameter identification of induction motors using stochastic optimization algorithms , 2004, Appl. Soft Comput..

[36]  Jacques Riget,et al.  A Diversity-Guided Particle Swarm Optimizer - the ARPSO , 2002 .

[37]  Jung-Shan Lin,et al.  Nonlinear design of active suspensions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[38]  Hitoshi Iba,et al.  Particle swarm optimization with Gaussian mutation , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[39]  B. Alatas,et al.  Chaos embedded particle swarm optimization algorithms , 2009 .

[40]  Alireza Alfi,et al.  Parameter Identification Based on a Modified PSO Applied to Suspension System , 2010, J. Softw. Eng. Appl..