Investigation of metal-insulator like transition through the ab initio density matrix renormalization group approach

We have studied the Metal-Insulator like Transition (MIT) in lithium and beryllium ring-shaped clusters through ab initio Density Matrix Renormalization Group (DMRG) method. Performing accurate calculations for different interatomic distances and using Quantum Information Theory (QIT) we investigated the changes occurring in the wavefunction between a metallic-like state and an insulating state built from free atoms. We also discuss entanglement and relevant excitations among the molecular orbitals in the Li and Be rings and show that the transition bond length can be detected using orbital entropy functions. Also, the effect of different orbital basis on the effectiveness of the DMRG procedure is analyzed comparing the convergence behavior.

[1]  R. Resta Kohn's theory of the insulating state: a quantum-chemistry viewpoint. , 2006, The Journal of chemical physics.

[2]  F. Gebhard,et al.  Excited states in polydiacetylene chains: A density matrix renormalization group study , 2013, 1303.2492.

[3]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[4]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[5]  T. Xiang,et al.  Optimizing Hartree-Fock orbitals by the density-matrix renormalization group , 2010, 1002.1287.

[6]  Hai-bo Ma,et al.  Assessment of various natural orbitals as the basis of large active space density-matrix renormalization group calculations. , 2013, The Journal of chemical physics.

[7]  Yuki Kurashige,et al.  Multireference electron correlation methods with density matrix renormalisation group reference functions , 2014 .

[8]  B. A. Hess,et al.  QC-DMRG study of the ionic-neutral curve crossing of LiF , 2002 .

[9]  Penc,et al.  Phase diagram of the one-dimensional extended Hubbard model with attractive and/or repulsive interactions at quarter filling. , 1993, Physical Review B (Condensed Matter).

[10]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[11]  F. Mila,et al.  Phase diagram of the one-dimensional extended Hubbard model at quarter filling , 1993, cond-mat/9302010.

[12]  J. Sólyom,et al.  Optimizing the density-matrix renormalization group method using quantum information entropy , 2003 .

[13]  S. Mazumdar,et al.  Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: a peculiar role of geometry. , 2013, The Journal of chemical physics.

[14]  F. Gebhard,et al.  Optical excitations of Peierls–Mott insulators with bond disorder , 2004, cond-mat/0405180.

[15]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[16]  Walter Kohn,et al.  THEORY OF THE INSULATING STATE , 1964 .

[17]  Markus Reiher,et al.  Orbital Entanglement in Bond-Formation Processes. , 2013, Journal of chemical theory and computation.

[18]  Debashree Ghosh,et al.  Orbital optimization in the density matrix renormalization group, with applications to polyenes and beta-carotene. , 2007, The Journal of chemical physics.

[19]  Dimitri Van Neck,et al.  The density matrix renormalization group for ab initio quantum chemistry , 2014, The European Physical Journal D.

[20]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[21]  Nevill Mott,et al.  Metal-Insulator Transition , 1968 .

[22]  S. Ramasesha,et al.  Exact entanglement studies of strongly correlated systems: role of long-range interactions and symmetries of the system , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Ors Legeza,et al.  Entanglement production by independent quantum channels , 2005, cond-mat/0512270.

[24]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[25]  M. Reiher,et al.  Unravelling the quantum-entanglement effect of noble gas coordination on the spin ground state of CUO. , 2013, Physical chemistry chemical physics : PCCP.

[26]  M. Reiher,et al.  Quantum-information analysis of electronic states of different molecular structures , 2010, 1008.4607.

[27]  G. Chan,et al.  Entangled quantum electronic wavefunctions of the Mn₄CaO₅ cluster in photosystem II. , 2013, Nature chemistry.

[28]  W. Barford,et al.  Density matrix renormalization calculations of the relaxed energies and solitonic structures of polydiacetylene , 2003 .

[29]  A. Mitrushchenkov,et al.  On the importance of orbital localization in QC-DMRG calculations , 2012 .

[30]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[31]  M. Reiher,et al.  Entanglement Measures for Single- and Multireference Correlation Effects. , 2012, The journal of physical chemistry letters.

[32]  S. Ramasesha,et al.  Structural and electronic instabilities in polyacenes: Density-matrix renormalization group study of a long-range interacting model , 2002 .

[33]  S. White,et al.  Measuring orbital interaction using quantum information theory , 2005, cond-mat/0508524.

[34]  O. Legeza,et al.  Quantum data compression, quantum information generation, and the density-matrix renormalization group method , 2004, cond-mat/0401136.

[35]  S. Mazumdar,et al.  Subgap two-photon states in polycyclic aromatic hydrocarbons: Evidence for strong electron correlations , 2013, 1311.0567.

[36]  O. Legeza,et al.  Quantum information analysis of the phase diagram of the half-filled extended Hubbard model , 2009, 0904.4673.

[37]  Paul W. Ayers,et al.  The density matrix renormalization group for ab initio quantum chemistry , 2013, The European Physical Journal D.

[38]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[39]  Kwang S. Kim,et al.  Linear and nonlinear optical properties of indeno[2,1-b]fluorene and its structural isomers. , 2014, Physical chemistry chemical physics : PCCP.

[40]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[41]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[42]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[43]  Elliott H. Lieb,et al.  Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension , 1968 .

[44]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[45]  B. A. Hess,et al.  Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach , 2002, cond-mat/0204602.

[46]  Bruce Hendrickson,et al.  A Spectral Algorithm for Seriation and the Consecutive Ones Problem , 1999, SIAM J. Comput..

[47]  Richard L. Martin,et al.  Ab initio quantum chemistry using the density matrix renormalization group , 1998 .

[48]  Markus Reiher,et al.  The Density Matrix Renormalization Group Algorithm in Quantum Chemistry , 2010 .