Getting Started in Gene Expression Microarray Analysis

Gene expression microarrays provide a snapshot of all the transcriptional activity in a biological sample. Unlike most traditional molecular biology tools, which generally allow the study of a single gene or a small set of genes, microarrays facilitate the discovery of totally novel and unexpected functional roles of genes. The power of these tools has been applied to a range of applications, including discovering novel disease subtypes, developing new diagnostic tools, and identifying underlying mechanisms of disease or drug response. However, this technology necessarily produces a large amount of data, challenging us to interpret it by exploiting modern computational and statistical tools. In this brief review, we aim to indicate the major issues involved in microarray analysis and provide a useful starting point for new microarray users. Figure 1 outlines the steps in a typical expression microarray experiment and maps them to the different sections of this review. Figure 1 Overview of steps in a typical gene expression microarray experiment.

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  P. Collins,et al.  Performance comparison of one-color and two-color platforms within the Microarray Quality Control (MAQC) project , 2006, Nature Biotechnology.

[3]  M. Stephens,et al.  RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. , 2008, Genome research.

[4]  Donna K Slonim,et al.  Functional genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant in Down syndrome fetuses , 2009, Proceedings of the National Academy of Sciences.

[5]  James A. Smagala,et al.  Diagnostic microarray for influenza B viruses. , 2007, Analytical chemistry.

[6]  Hanlee P. Ji,et al.  The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. , 2006, Nature biotechnology.

[7]  Jelle J. Goeman,et al.  A global test for groups of genes: testing association with a clinical outcome , 2004, Bioinform..

[8]  R. Tibshirani,et al.  On testing the significance of sets of genes , 2006, math/0610667.

[9]  Samuel A. Assefa,et al.  A Strand-Specific RNA–Seq Analysis of the Transcriptome of the Typhoid Bacillus Salmonella Typhi , 2009, PLoS genetics.

[10]  S. S. Young,et al.  Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[11]  John Quackenbush,et al.  Multiple-laboratory comparison of microarray platforms , 2005, Nature Methods.

[12]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[13]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[14]  Seon-Young Kim,et al.  PAGE: Parametric Analysis of Gene Set Enrichment , 2005, BMC Bioinform..

[15]  William Stafford Noble,et al.  Exploring Gene Expression Data with Class Scores , 2001, Pacific Symposium on Biocomputing.

[16]  Rainer Spang,et al.  Finding disease specific alterations in the co-expression of genes , 2004, ISMB/ECCB.

[17]  Nir Friedman,et al.  Tissue classification with gene expression profiles , 2000, RECOMB '00.

[18]  G. Churchill,et al.  Experimental design for gene expression microarrays. , 2001, Biostatistics.

[19]  Rafael A. Irizarry,et al.  Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005 .

[20]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[21]  Yogendra P. Chaubey Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[22]  Jun Lu,et al.  Pathway level analysis of gene expression using singular value decomposition , 2005, BMC Bioinformatics.

[23]  Robert Gentleman,et al.  Using Go for Statistical Analyses , 2004 .

[24]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[26]  A. Witteveen,et al.  Converting a breast cancer microarray signature into a high-throughput diagnostic test , 2006, BMC Genomics.

[27]  G. A. Whitmore,et al.  Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Yoav Benjamini,et al.  Identifying differentially expressed genes using false discovery rate controlling procedures , 2003, Bioinform..

[29]  S. Dudoit,et al.  Multiple Hypothesis Testing in Microarray Experiments , 2003 .

[30]  Purvesh Khatri,et al.  Ontological analysis of gene expression data: current tools, limitations, and open problems , 2005, Bioinform..

[31]  J. Davis Bioinformatics and Computational Biology Solutions Using R and Bioconductor , 2007 .

[32]  T. Speed,et al.  Design issues for cDNA microarray experiments , 2002, Nature Reviews Genetics.

[33]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[34]  Jun Hua,et al.  Extending the loop design for two-channel microarray experiments. , 2006, Genetical research.

[35]  Maqc Consortium The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements , 2006, Nature Biotechnology.

[36]  George Michailidis,et al.  Introduction to Machine Learning and Bioinformatics , 2008 .

[37]  D. Slonim From patterns to pathways: gene expression data analysis comes of age , 2002, Nature Genetics.

[38]  D. Koller,et al.  A module map showing conditional activity of expression modules in cancer , 2004, Nature Genetics.

[39]  M Richard Simon,et al.  Design and Analysis of DNA Microarray Investigations , 2004 .

[40]  Eric T. Wang,et al.  Alternative Isoform Regulation in Human Tissue Transcriptomes , 2008, Nature.