Numerical analysis of a linearised fluid-structure interaction problem

Summary. This paper describes the numerical analysis of a time dependent linearised fluid structure interaction problems involving a very viscous fluid and an elastic shell in small displacements. For simplicity, all changes of geometry are neglected. A single variational formulation is proposed for the whole problem and generic discretisation strategies are introduced independently on the fluid and on the structure. More precisely, the space approximation of the fluid problem is realized by standard mixed finite elements, the shell is approximated by DKT finite elements, and time derivatives are approximated either by midpoint rules or by backward difference formula.Using fundamental energy estimates on the continuous problem written in a proper functional space, on its discrete equivalent, and on an associated error evolution equation, we can prove that the proposed variational problem is well posed, and that its approximation in space and time converges with optimal order to the continuous solution.

[1]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[2]  G. Dhatt,et al.  An efficient triangular shell element , 1970 .

[3]  Hervé Guillard,et al.  A Second Order Defect Correction Scheme for Unsteady Problems , 1996 .

[4]  Maïté Carrive-Bedouani,et al.  Approximations par éléments finis d'un modèle de coques minces géométriquement exact , 1995 .

[5]  Patrick Le Tallec,et al.  Analyse numérique d'un modèle de coques de Koiter discrétisé en base cartésienne par éléments finis DKT , 1998 .

[6]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[7]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[8]  Hervé Guillard,et al.  Godunov type method on non-structured meshes for three-dimensional moving boundary problems , 1994 .

[9]  P. Tallec Numerical methods for nonlinear three-dimensional elasticity , 1994 .

[10]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[11]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[12]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[13]  Charbel Farhat,et al.  Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations , 1996 .

[14]  Charbel Farhat,et al.  Higher-Order Staggered and Subiteration Free Algorithms for Coupled Dynamic Aeroelasticity Problems , 1998 .

[15]  Charbel Farhat,et al.  On the significance of the geometric conservation law for flow computations on moving meshes , 2000 .

[16]  Patrick Le Tallec,et al.  Structures en grands déplacements couplées à des fluides en mouvement , 1996 .

[17]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[18]  O. Pironneau Finite Element Methods for Fluids , 1990 .

[19]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.