暂无分享,去创建一个
Paolo Papotti | Saravanan Thirumuruganathan | Riccardo Cappuzzo | Paolo Papotti | Saravanan Thirumuruganathan | Riccardo Cappuzzo
[1] Jeffrey F. Naughton,et al. Corleone: hands-off crowdsourcing for entity matching , 2014, SIGMOD Conference.
[2] Michael Günther. FREDDY: Fast Word Embeddings in Database Systems , 2018, SIGMOD Conference.
[3] Theodoros Rekatsinas,et al. Deep Learning for Entity Matching: A Design Space Exploration , 2018, SIGMOD Conference.
[4] Paolo Papotti,et al. ++Spicy: an OpenSource Tool for Second-Generation Schema Mapping and Data Exchange , 2011, Proc. VLDB Endow..
[5] Mourad Ouzzani,et al. Distributed representations of tuples for entity resolution , 2018, VLDB 2018.
[6] Yoshua Bengio,et al. Word Representations: A Simple and General Method for Semi-Supervised Learning , 2010, ACL.
[7] Mourad Ouzzani,et al. Data Curation with Deep Learning [Vision]: Towards Self Driving Data Curation , 2018, ArXiv.
[8] S. Madden,et al. XML JSON CSVXML JSON CSV SQL XML JSON CSVXML JSON CSV Information Extractor Relational Embedder Data Encoder , 2019 .
[9] Michael Stonebraker,et al. Seeping Semantics: Linking Datasets Using Word Embeddings for Data Discovery , 2018, 2018 IEEE 34th International Conference on Data Engineering (ICDE).
[10] Jure Leskovec,et al. node2vec: Scalable Feature Learning for Networks , 2016, KDD.
[11] Thorsten Joachims,et al. Evaluation methods for unsupervised word embeddings , 2015, EMNLP.
[12] Oded Shmueli,et al. Using Word Embedding to Enable Semantic Queries in Relational Databases , 2017, DEEM@SIGMOD.