Central safety factor and βN control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of βN and the safety factor profile. In this work, a novel approach to simultaneously controlling βN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

[1]  C. Neumeyer,et al.  Overview of the physics and engineering design of NSTX upgrade , 2011, IEEE/IPSS Symposium on Fusion Engineering.

[2]  Eugenio Schuster,et al.  Robust control of the safety factor profile and stored energy evolutions in high performance burning plasma scenarios in the ITER tokamak , 2013, 52nd IEEE Conference on Decision and Control.

[3]  M. Wisse,et al.  Collisionality and safety factor scalings of H-mode energy transport in the MAST spherical tokamak , 2011 .

[4]  R. Mozulay,et al.  NSTX-U Control System Upgrades , 2014 .

[5]  S. S. Medley,et al.  Collective fast ion instability-induced losses in National Spherical Tokamak Experiment , 2006 .

[6]  R. Budny,et al.  A STANDARD DT SUPERSHOT SIMULATION , 1994 .

[7]  R. Bell,et al.  Experimental studies on fast-ion transport by Alfven wave avalanches on the National Spherical Torus Experiment , 2009 .

[8]  Olivier Sauter,et al.  Stability at high performance in the MAST Spherical Tokamak , 2004 .

[9]  S. Saarelma,et al.  Macroscopic stability of high β MAST plasmas , 2011 .

[10]  D. Humphreys,et al.  Real-time mirror steering for improved closed loop neoclassical tearing mode suppression by electron cyclotron current drive in DIII-D , 2013 .

[11]  R. Miller,et al.  Improved magnetohydrodynamic stability through optimization of higher order moments in cross-section shape of tokamaks , 1999 .

[12]  Eugenio Schuster,et al.  Backstepping Control of the Toroidal Plasma Current Profile in the DIII-D Tokamak , 2014, IEEE Transactions on Control Systems Technology.

[13]  S. S. Medley,et al.  Observation of instability-induced current redistribution in a spherical-torus plasma. , 2006, Physical review letters.

[14]  R. Bell,et al.  Energy confinement scaling in the low aspect ratio National Spherical Torus Experiment (NSTX) , 2005 .

[15]  P. M. Ryan,et al.  Overview of recent physics results from the National Spherical Torus Experiment (NSTX) , 2007 .

[16]  R. J. La Haye,et al.  Plasma models for real-time control of advanced tokamak scenarios , 2011 .

[17]  J. Lawson,et al.  Implementation of βN Control in the National Spherical Torus Experiment , 2012 .

[18]  Laila A. El-Guebaly,et al.  Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator , 2011 .

[19]  Eugenio Schuster,et al.  Physics-based control-oriented modeling of the safety factor profile dynamics in high performance tokamak plasmas , 2013, 52nd IEEE Conference on Decision and Control.

[20]  Edward Laird,et al.  First results from MAST , 2001 .

[21]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[22]  A. D. Turnbull,et al.  Optimizing stability, transport, and divertor operation through plasma shaping for steady-state scenario development in DIII-D , 2009 .

[23]  R. Bell,et al.  Scaling of Electron and Ion Transport in the High-Power Spherical Torus NSTX , 2007 .

[24]  Clarence W. Rowley,et al.  Plasma modelling results and shape control improvements for NSTX , 2011 .

[25]  L. L. Lao,et al.  Overview of results from the National Spherical Torus Experiment (NSTX) , 2009 .

[26]  G. Bateman,et al.  The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library , 2004 .

[27]  S. Wolfe,et al.  A new look at density limits in tokamaks , 1988 .

[28]  E. D. Fredrickson,et al.  Internal kink mode dynamics in high-β NSTX plasmas , 2005 .

[29]  M. Viola,et al.  Exploration of spherical torus physics in the NSTX device , 2000 .

[30]  An Experiment to Tame the Plasma Material Interface , 2009 .

[31]  Eugenio Schuster,et al.  First-principles-driven model-based current profile control for the DIII-D tokamak via LQI optimal control , 2013 .

[32]  F. Hinton,et al.  Trapped electron correction to beam driven current in general tokamak equilibria , 1997 .

[33]  James R. Wilson,et al.  Progress towards steady state at low aspect ratio on the National Spherical Torus Experiment (NSTX) , 2007 .

[34]  J. Manickam,et al.  Onset and saturation of a non-resonant internal mode in NSTX and implications for AT modes in ITER , 2011 .

[35]  F. Levinton,et al.  The motional Stark effect diagnostic on NSTX. , 2008, The Review of scientific instruments.

[36]  L. L. Lao,et al.  Real time equilibrium reconstruction for tokamak discharge control , 1998 .

[37]  Richard M. Murray,et al.  Feedback Systems An Introduction for Scientists and Engineers , 2007 .

[38]  Clarence W. Rowley,et al.  Strike point control for the National Spherical Torus Experiment (NSTX) , 2010 .

[39]  R. J. Hawryluk,et al.  An Empirical Approach to Tokamak Transport , 1981 .

[40]  D. A. Humphreys,et al.  Towards model-based current profile control at DIII-D , 2007 .

[41]  X. Litaudon,et al.  Predictive transport simulations of real-time profile control in JET advanced tokamak plasmas , 2005 .

[42]  K. Tritz,et al.  Modeling fast-ion transport during toroidal Alfvén eigenmode avalanches in National Spherical Torus Experiment , 2009 .

[43]  Jet Efda Contributors,et al.  A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET , 2008 .

[44]  F. Hinton,et al.  Effect of finite aspect ratio on the neoclassical ion thermal conductivity in the banana regime , 1982 .

[45]  S. Pinches,et al.  Recent experiments on Alfvén eigenmodes in MAST , 2008 .

[46]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[47]  B. G. Penaflor,et al.  Plasma shape control on the National Spherical Torus Experiment (NSTX) using real-time equilibrium reconstruction , 2005 .

[48]  A. T. Ramsey,et al.  Parallel electric resistivity in the TFTR tokamak , 1990 .

[49]  K. Tritz,et al.  Confinement and local transport in the National Spherical Torus Experiment (NSTX) , 2007 .

[50]  Eugenio Schuster,et al.  Toroidal current profile control during low confinement mode plasma discharges in DIII-D via first-principles-driven model-based robust control synthesis , 2012 .