Scalable printing of two-dimensional single crystals of organic semiconductors towards high-end device applications

The past several decades have witnessed a vast array of developments in printable organic semiconductors, where successes both in synthetic chemistry and in printing technology constituted a key step forward to the realization of printed electronics. In this Review, we highlight specifically materials science, charge transport, and device engineering of—two-dimensional single crystals—. Defect-free organic single-crystalline wafers manufactured via a one-shot printing process allow remarkably reliable implementations of organic thin-film transistors with decently high carrier mobility up to 10 cm2 V−1 s−1, which has revolutionized the current printing electronics to be able to meet looming internet of things challenges. This Review focuses on the perspective of printing two-dimensional single crystals with reasonable areal coverage, showing their promising applications for practical devices and future human society, particularly based on our recent contributions.