Impact resistance of armor steel/ceramic/UHPC layered composite targets against 30CrMnSiNi2A steel projectiles

[1]  P. Mahajan,et al.  Ballistic impact behaviour of newly developed armour grade steel: An experimental and numerical study , 2020, International Journal of Impact Engineering.

[2]  Leong Hien Poh,et al.  Critical parameters for the penetration depth in cement-based materials subjected to small caliber non-deformable projectile impact , 2020 .

[3]  D. Mohr,et al.  Dynamic perforation of ultra-hard high-strength armor steel: Impact experiments and modeling , 2019, International Journal of Impact Engineering.

[4]  R. Gravina,et al.  A new constitutive model for steel fibre reinforced concrete subjected to dynamic loads , 2019, Composite Structures.

[5]  Chengqing Wu,et al.  Experimental and numerical investigations of penetration resistance of ultra-high strength concrete protected with ceramic balls subjected to projectile impact , 2019, Ceramics International.

[6]  Chengqing Wu,et al.  Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts , 2018, Engineering Structures.

[7]  Xiangzhen Kong,et al.  Parameters of Holmquist–Johnson–Cook model for high-strength concrete-like materials under projectile impact , 2017 .

[8]  Q. Fang,et al.  Projectile penetration into mortar targets with a broad range of striking velocities: Test and analyses , 2017 .

[9]  Chengqing Wu,et al.  Numerical study of ultra-high performance concrete under non-deformable projectile penetration , 2017 .

[10]  W. Attia,et al.  Using ceramic plates as shielding for concrete blocks against projectile penetration , 2016 .

[11]  Weiwei Sun,et al.  An armour-piercing projectile penetration in a double-layered target of ultra-high-performance fiber reinforced concrete and armour steel: Experimental and numerical analyses , 2016 .

[12]  Q. Fang,et al.  Flat nosed projectile penetrating into UHP-SFRC target: Experiment and analysis , 2016 .

[13]  Q. Fang,et al.  Projectile impact resistance of corundum aggregated UHP-SFRC , 2015 .

[14]  I. Sridhar,et al.  Empirical Ballistic Limit Velocity Model for Bi-Layer Ceramic–Metal Armor , 2015 .

[15]  Zhiyuan Zhang,et al.  Experimental validation of BLV model on bi-layer ceramic-metal armor , 2015 .

[16]  Radoslav Sovják,et al.  Resistance of slim UHPFRC targets to projectile impact using in-service bullets , 2015 .

[17]  Q. Fang,et al.  Projectile penetration of ultra-high performance cement based composites at 510–1320m/s , 2015 .

[18]  G. R. Johnson,et al.  A Computational Constitutive Model for Glass Subjected to Large Strains, High Strain Rates and High Pressures , 2011 .

[19]  G. R. Johnson,et al.  An improved computational constitutive model for brittle materials , 2008 .

[20]  A. N. Dancygier,et al.  Response of high performance concrete plates to impact of non-deforming projectiles , 2007 .

[21]  Kamran Behdinan,et al.  Optimum design of two-component composite armours against high-speed impact , 2006 .

[22]  K. Ramanjaneyulu,et al.  An experimental study of penetration resistance of ceramic armour subjected to projectile impact , 2005 .

[23]  V.P.W. Shim,et al.  Resistance of high-strength concrete to projectile impact , 2005 .

[24]  B. Lundberg,et al.  Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials , 2005 .

[25]  François Hild,et al.  Effect of aluminum reinforcement on the dynamic fragmentation of SiC ceramics , 2003 .

[26]  Zvi Rosenberg,et al.  Numerical study of the transition from rigid to eroding-rod penetration , 2003 .

[27]  M. Forrestal,et al.  Penetration of concrete targets with deceleration-time measurements , 2003 .

[28]  V. Hohler,et al.  COMPARATIVE ANALYSIS OF OBLIQUE IMPACT ON CERAMIC COMPOSITE SYSTEMS , 2001 .

[29]  Min Zhou,et al.  Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization , 2001 .

[30]  Gabi Ben-Dor,et al.  Optimization of two component ceramic armor for a given impact velocity , 2000 .

[31]  Bengt Lundberg,et al.  Impact of metallic projectiles on ceramic targets : transition between interface defeat and penetration , 2000 .

[32]  J. Reaugh,et al.  Impact studies of five ceramic materials and pyrex , 1998 .

[33]  R. R. Franzen,et al.  The influence of experimental design on depth-of-penetration (DOP) test results and derived ballistic efficiencies , 1997 .

[34]  T. L. Warren,et al.  Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts , 1996 .

[35]  N. S. Brar,et al.  PENETRATION OF GROUT AND CONCRETE TARGETS WITH OGIVE-NOSE STEEL PROJECTILES , 1996 .

[36]  B. S. Altman,et al.  An empirical equation for penetration depth of ogive-nose projectiles into concrete targets , 1994 .

[37]  Michael J. Keele,et al.  High Velocity Performance of a Uranium Alloy Long Rod Penetrator , 1991 .

[38]  P. Woolsey,et al.  Alternative Test Methodology for Ballistic Performance Ranking of Armor Ceramics , 1989 .

[39]  D. Benson An efficient, accurate, simple ALE method for nonlinear finite element programs , 1989 .

[40]  G. R. Johnson,et al.  A CONSTITUTIVE MODEL AND DATA FOR METALS SUBJECTED TO LARGE STRAINS, HIGH STRAIN RATES AND HIGH TEMPERATURES , 2018 .

[41]  D. Mohr,et al.  Fracture of high-strength armor steel under impact loading , 2018 .

[42]  Petr Konvalinka,et al.  Mix design of UHPFRC and its response to projectile impact , 2014 .

[43]  Petr Konvalinka,et al.  Experimental Investigation of Ultra-high Performance Fiber Reinforced Concrete Slabs Subjected to Deformable Projectile Impact , 2013 .

[44]  Zhang Rou-qi Experimental Study of the Penetration into the Steel Fiber Reinforced Concrete Targets within Armor Plates and Ceramic Plates , 2006 .

[45]  Tore Børvik,et al.  Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and c , 2002 .

[46]  E. F. O'Neil,et al.  Tensile Properties of Very-High-Strength Concrete for Penetration-Resistant Structures , 1999 .

[47]  M. J. Forrestal,et al.  Penetration of 7075-T651 aluminum targets with ogival-nose rods , 1992 .

[48]  M. J. Forrestal,et al.  Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths , 1992 .

[49]  Z. Rozenberg,et al.  The relation between ballastic efficiency and compressive strength of ceramic tiles , 1988 .

[50]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .