Roles of titania and plasmonic gold nanoparticles of different sizes in photocatalytic methane coupling at room temperature

[1]  Geoffrey I N Waterhouse,et al.  Selective Photocatalytic Oxidative Coupling of Methane via Regulating Methyl Intermediates over Metal/ZnO Nanoparticles. , 2023, Angewandte Chemie.

[2]  A. Addad,et al.  Thermocatalysis enables photocatalytic oxidation of methane to formic acid at room temperature beyond the selectivity limits , 2023, Cell Reports Physical Science.

[3]  M. Kormunda,et al.  Effect of amines on the peroxo-titanates and photoactivity of annealed TiO2 , 2022, Arabian Journal of Chemistry.

[4]  Jinhua Ye,et al.  A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen , 2021, Nature Catalysis.

[5]  P. Choudhary,et al.  Recent Advances in Plasmonic Photocatalysis Based on TiO2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. , 2021, Small.

[6]  Rui‐tang Guo,et al.  A review of metal oxide-based Z-scheme heterojunction photocatalysts: Actualities and developments , 2021 .

[7]  Guangming Wang,et al.  Light‐Induced Nonoxidative Coupling of Methane Using Stable Solid Solutions , 2021, Angewandte Chemie.

[8]  Hongliang Li,et al.  Photocatalytic Conversion of Methane: Recent Advancements and Prospects. , 2021, Angewandte Chemie.

[9]  A. Khodakov,et al.  Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions , 2021 .

[10]  O. Balitskii Recent energy targeted applications of localized surface plasmon resonance semiconductor nanocrystals: a mini-review , 2021 .

[11]  Jinhua Ye,et al.  Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects , 2021, Chemical science.

[12]  Jinlong Zhang,et al.  Exploring the Size Effect of Pt Nanoparticles on the Photocatalytic Nonoxidative Coupling of Methane , 2021 .

[13]  Junwang Tang,et al.  Strategies and Challenges on Selectivity of Photocatalytic Oxidation of Organic Substances , 2021, Advanced Energy Materials.

[14]  Zhi Liu,et al.  Pd-Modified ZnO-Au Enabling Alkoxy Intermediates Formation and Dehydrogenation for Photocatalytic Conversion of Methane to Ethylene. , 2020, Journal of the American Chemical Society.

[15]  A. Naldoni,et al.  Hot electron and thermal effects in plasmonic photocatalysis , 2020 .

[16]  Y. Hu,et al.  Highly efficient light-driven methane coupling under ambient conditions based on an integrated design of a photocatalytic system , 2020 .

[17]  Junwang Tang,et al.  Platinum‐ and CuOx‐Decorated TiO2 Photocatalyst for Oxidative Coupling of Methane to C2 Hydrocarbons in a Flow Reactor , 2020, Angewandte Chemie.

[18]  J. Ding,et al.  Solar-driven efficient methane catalytic oxidation over epitaxial ZnO/La0.8Sr0.2CoO3 heterojunctions , 2020 .

[19]  A. Townsend‐Small,et al.  Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement , 2020, Reviews of Geophysics.

[20]  Jinlong Zhang,et al.  Ga-Doped and Pt-Loaded Porous TiO2-SiO2 for Photocatalytic Nonoxidative Coupling of Methane. , 2019, Journal of the American Chemical Society.

[21]  Suljo Linic,et al.  Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures , 2018, Nature Catalysis.

[22]  J. Scheffe,et al.  Kinetic insights into the reduction of ceria facilitated via the partial oxidation of methane , 2018, Materials Today Energy.

[23]  Radhika K. Poduval,et al.  TiO2 nanofiber photoelectrochemical cells loaded with sub-12 nm AuNPs: Size dependent performance evaluation , 2018, Materials Today Energy.

[24]  S. Livraghi,et al.  Electron magnetic resonance as a tool to monitor charge separation and reactivity in photocatalytic materials , 2018, Research on Chemical Intermediates.

[25]  Xuxu Wang,et al.  Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces , 2018 .

[26]  T. Nagao,et al.  Light-Enhanced Carbon Dioxide Activation and Conversion by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles. , 2018, ACS applied materials & interfaces.

[27]  J. Coulter,et al.  Multifunctional and robust composite materials comprising gold nanoparticles at a spherical polystyrene particle surface. , 2016, Chemical communications.

[28]  D. Cortie,et al.  Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts , 2016, Nature Communications.

[29]  Yu Chong,et al.  Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation , 2016, Nano Research.

[30]  Francesco Scotognella,et al.  Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods , 2016, Nature Communications.

[31]  D. M. Lawrence,et al.  Climate change and the permafrost carbon feedback , 2014, Nature.

[32]  G. Spoto,et al.  CO2 Capture by TiO2 Anatase Surfaces: A Combined DFT and FTIR Study , 2014 .

[33]  K. Hwang,et al.  Metal nanoparticles sensitize the formation of singlet oxygen. , 2011, Angewandte Chemie.

[34]  T. Chen,et al.  Mechanistic Studies of Photocatalytic Reaction of Methanol for Hydrogen Production on Pt/TiO2 by in situ Fourier Transform IR and Time-Resolved IR Spectroscopy , 2007 .

[35]  K. Hadjiivanov,et al.  Comparative study of Au/Al2O3 and Au/CeO2-Al2O3 catalysts , 2006 .

[36]  M. Wong,et al.  EPR investigation of TiO2 nanoparticles with temperature-dependent properties. , 2006, The journal of physical chemistry. B.

[37]  J. Yates,et al.  Depletion of conduction band electrons in TiO2 by water chemisorption – IR spectroscopic studies of the independence of Ti–OH frequencies on electron concentration , 2005 .

[38]  J. Rasko,et al.  FTIR and mass spectrometric studies on the interaction of formaldehyde with TiO2 supported Pt and Au catalysts , 2004 .

[39]  J. Rasko,et al.  Formaldehyde formation in the interaction of HCOOH with Pt supported on TiO2 , 2004 .

[40]  Peter Claus,et al.  On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis , 2003 .

[41]  A. Chiorino,et al.  FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania , 2000 .

[42]  G. Griffin,et al.  Product selectivity during methanol decomposition on titania powders , 1988 .

[43]  A. Addad,et al.  Photocatalytic partial oxidation of methane to carbon monoxide and hydrogen over CIGS solar cell , 2023, Applied Catalysis B: Environmental.

[44]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .