A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices

Summary.We present a fast and numerically stable algorithm for computing the eigendecomposition of a symmetric block diagonal plus semiseparable matrix. We report numerical experiments that indicate that our algorithm is significantly faster than the standard method which treats the given matrix as a general symmetric dense matrix.

[1]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[2]  Jack J. Dongarra,et al.  A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.

[3]  D. Sorensen,et al.  On the orthogonality of eigenvectors computed by divide-and-conquer techniques , 1991 .

[4]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[5]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[6]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[7]  G. Stewart Introduction to matrix computations , 1973 .

[8]  S. Eisenstat,et al.  A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..

[9]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[10]  S. Chandrasekaran,et al.  Fast and stable eigendecomposition of symmetric banded plus semi-separable matrices , 2000 .

[11]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Bidiagonal SVD , 1995, SIAM J. Matrix Anal. Appl..

[12]  Ren-Cang Li Solving secular equations stably and efficiently , 1993 .

[14]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[15]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..

[16]  Ilse C. F. Ipsen,et al.  Improving the Accuracy of Inverse Iteration , 1992, SIAM J. Sci. Comput..

[17]  E. Jessup Parallel solution of the symmetric tridiagonal eigenproblem , 1989 .