A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices
暂无分享,去创建一个
[1] J. Bunch,et al. Rank-one modification of the symmetric eigenproblem , 1978 .
[2] Jack J. Dongarra,et al. A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.
[3] D. Sorensen,et al. On the orthogonality of eigenvectors computed by divide-and-conquer techniques , 1991 .
[4] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[5] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[6] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[7] G. Stewart. Introduction to matrix computations , 1973 .
[8] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[9] J. CARRIERt,et al. A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .
[10] S. Chandrasekaran,et al. Fast and stable eigendecomposition of symmetric banded plus semi-separable matrices , 2000 .
[11] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Bidiagonal SVD , 1995, SIAM J. Matrix Anal. Appl..
[12] Ren-Cang Li. Solving secular equations stably and efficiently , 1993 .
[14] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[15] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..
[16] Ilse C. F. Ipsen,et al. Improving the Accuracy of Inverse Iteration , 1992, SIAM J. Sci. Comput..
[17] E. Jessup. Parallel solution of the symmetric tridiagonal eigenproblem , 1989 .