Fuzzy Hyper-Prototype Clustering

We propose a fuzzy hyper-prototype algorithm in this paper. This approach uses hyperplanes to represent the cluster centers in the fuzzy c-means algorithm. We present the formulation of a hyperplane-based fuzzy objective function and then derive an iterative numerical procedure for minimizing the clustering criterion. We tested the method with data degraded with random noise. The experimental results show that the proposed method is robust to clustering noisy linear structure.

[1]  Chris H. Q. Ding,et al.  On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering , 2005, SDM.

[2]  Jin Liu,et al.  Fuzzy Hyper-clustering for Pattern Classification in Microarray Gene Expression Data Analysis , 2010, BIOSIGNALS.

[3]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Glenn Fung,et al.  Multicategory Proximal Support Vector Machine Classifiers , 2005, Machine Learning.

[5]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Bin Chen,et al.  Proximal support vector machine using local information , 2009, Neurocomputing.

[7]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[8]  J. Bezdek,et al.  Detection and Characterization of Cluster Substructure II. Fuzzy c-Varieties and Convex Combinations Thereof , 1981 .

[9]  Anirban Mukherjee,et al.  Nonparallel plane proximal classifier , 2009, Signal Process..

[10]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Dudoit,et al.  A prediction-based resampling method for estimating the number of clusters in a dataset , 2002, Genome Biology.

[12]  Paul S. Bradley,et al.  k-Plane Clustering , 2000, J. Glob. Optim..

[13]  Glenn Fung,et al.  Proximal support vector machine classifiers , 2001, KDD '01.

[14]  Hidetomo Ichihashi,et al.  Fuzzy local independent component analysis with external criteria and its application to knowledge discovery in databases , 2006, Int. J. Approx. Reason..

[15]  Leo Liberti,et al.  Mathematical Programming Formulations for the Bottleneck Hyperplane Clustering Problem , 2008, MCO.

[16]  Olvi L. Mangasarian,et al.  Multisurface proximal support vector machine classification via generalized eigenvalues , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  J. Bezdek,et al.  DETECTION AND CHARACTERIZATION OF CLUSTER SUBSTRUCTURE I. LINEAR STRUCTURE: FUZZY c-LINES* , 1981 .

[18]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[19]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Olvi L. Mangasarian,et al.  Arbitrary-norm separating plane , 1999, Oper. Res. Lett..

[21]  J. Łȩski Fuzzy c-varieties/elliptotypes clustering in reproducing kernel Hilbert space , 2004 .

[22]  Hidetomo Ichihashi,et al.  Component-wise robust linear fuzzy clustering for collaborative filtering , 2004, Int. J. Approx. Reason..