Realization of Metric Spaces as Inverse Limits, and Bilipschitz Embedding in L1

We give sufficient conditions for a metric space to bilipschitz embed in L1. In particular, if X is a length space and there is a Lipschitz map $${u: X \rightarrow \mathbb R}$$ such that for every interval $${I \subset \mathbb R}$$, the connected components of u−1(I) have diameter $${\leq {\rm const} \cdot {\rm diam}(I)}$$, then X admits a bilipschitz embedding in L1. As a corollary, the Laakso examples, (Geom Funct Anal 10(1):111–123, 2000), bilipschitz embed in L1, though they do not embed in any any Banach space with the Radon–Nikodym property (e.g. the space ℓ1 of summable sequences). The spaces appearing the statement of the bilipschitz embedding theorem have an alternate characterization as inverse limits of systems of metric graphs satisfying certain additional conditions. This representation, which may be of independent interest, is the initial part of the proof of the bilipschitz embedding theorem. The rest of the proof uses the combinatorial structure of the inverse system of graphs and a diffusion construction, to produce the embedding in L1.

[1]  Assaf Naor,et al.  . 20 24 v 2 [ cs . D S ] 18 N ov 2 00 9 A ( log n ) Ω ( 1 ) integrality gap for the Sparsest Cut SDP , 2009 .

[2]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[3]  M. Birkner,et al.  Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach , 2002 .

[4]  U. Lang,et al.  Bilipschitz Embeddings of Metric Spaces into Space Forms , 2001 .

[5]  J. Cheeger,et al.  Differentiating maps into L1, and the geometry of BV functions , 2006, math/0611954.

[6]  T. Laakso Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .

[7]  G. Whyburn Non-Alternating Transformations , 1934 .

[8]  Samuel Eilenberg,et al.  Sur les transformations continues d'espaces métriques compacts , 1934 .

[9]  Bruce Kleiner,et al.  Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon–Nikodym Property , 2008, 0808.3249.

[10]  D. Dacunha-castelle,et al.  Application des ultraproduits à l'étude des espaces et des algèbres de Banach , 1972 .

[11]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[12]  Bruce Kleiner,et al.  Generalized differentiation and bi-Lipschitz nonembedding in L1⁎ , 2006 .

[13]  Marc Bourdon,et al.  Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings , 1997 .

[14]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[15]  J. Krivine,et al.  Lois stables et espaces $L^p$ , 1967 .

[16]  S. Kakutani Mean Ergodic Theorem in Abstract (L)-Spaces , 1939 .

[17]  Stefan Heinrich,et al.  Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces , 1982 .

[18]  Assaf Naor,et al.  A $(\log n)^{\Omega(1)}$ Integrality Gap for the Sparsest Cut SDP , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[19]  Bruce Kleiner,et al.  On the differentiability of Lispschitz maps from metric measure spaces to Banach spaces , 2006 .

[20]  Ryszard Engelking,et al.  Theory of dimensions : finite and infinite , 1995 .

[21]  Bruce Kleiner,et al.  Metric differentiation, monotonicity and maps to L1 , 2009, 0907.3295.

[22]  Bernd Kirchheim Rectifiable metric spaces: local structure and regularity of the Hausdorff measure , 1994 .

[23]  V. Uspenskij,et al.  Light maps and extensional dimension , 1997 .