Trapping and detrapping effects in lithium-drifted germanium and silicon detectors

Abstract The trapping-detrapping behaviour of Ge(Li) and Si(Li) detectors at low temperatures (T The conclusion has been reached that the trapping centres are the primary dopants: Li and Ga in Ge(Li) detectors, Li and B in Si(Li) detectors. Normal spectrometer operation is not affected by these shallow traps because their small activation energies result in very fast detrapping at T⩾77 K. A field assisted detrapping effect has been identified for the first time in Ge. This effect allows good spectrometer performance down to at least 8 K at high electric fields. No such field detrapping effect was observed in Si(Li) detectors, so the low temperature limit of operation is established at ≈ 50 K by the thermal re-emission of carriers from the shallow traps. Deep trapping effects at 77 K in Ge(Li) detectors have also been briefly investigated. A probable explanation is offered for the observed improvement in performance of many detectors at high electric fields. The values of the measured capture cross-sections for trapping of the carriers by the ionized dopants in Ge and Si fall in the same range as those in the literature. This demonstrates the potential of lithium-drifted devices for the study of these processes.

[1]  G. Ottaviani,et al.  Ramo's theorem and the energy balance equations in evaluating the current pulse from semiconductor detectors , 1969 .

[2]  C. S. Fuller,et al.  Chemical interactions among defects in germanium and silicon , 1956 .

[3]  J. Falk,et al.  Transit time of charge carriers in the semiconductor ionization chamber , 1961 .

[4]  W. Spear Carrier mobility and charge transport in monoclinic Se crystals , 1961 .

[5]  Richard H. Bube,et al.  Electric Field Effects in Trapping Processes , 1966 .

[6]  O. Meyer,et al.  Die Beweglichkeit "heisser" Elektronen und ihr Einfluss auf die Anstiegszeit der Impulse von Halbleiterzählern aus n-Silizium , 1965 .

[7]  M. Martini,et al.  Performance of Si(Li) detectors over a wide temperature range , 1969 .

[8]  A. Milnes,et al.  Lifetime and capture cross-section studies of deep impurities in silicon , 1968 .

[9]  G. Ascarelli,et al.  Recombination of Electrons and Donors in n-Type Germanium , 1960 .

[10]  J. Ruch,et al.  MEASUREMENT OF THE VELOCITY FIELD CHARACTERISTIC OF ELECTRONS IN GERMANIUM , 1968 .

[11]  G. Ottaviani,et al.  The Pulse Shape and the Timing Problem in Solid State Detectors - A Review Paper , 1969 .

[12]  K. Zanio,et al.  Transient Currents in Semi‐Insulating CdTe Characteristic of Deep Traps , 1968 .

[13]  S. H. Koenig,et al.  Electrical Conduction in n-Type Germanium at Low Temperatures , 1962 .

[14]  G. Ottaviani,et al.  On the information available from the rise-time of the charge pulse supplied by semiconductor particle detectors , 1965 .

[15]  E. Gatti,et al.  ON THE INDUCED CHARGE IN SEMICONDUCTOR DETECTORS , 1963 .

[16]  K. W. Böer,et al.  Die elektrische Anregung als Primäreffekt für den Felddurchschlag , 1954 .

[17]  I. L. Fowler,et al.  Use of collimated gamma-ray beams in the study of Ge(Li) detectors , 1968 .

[18]  M. Martini,et al.  SHALLOW LEVEL TRAPPING AND DETRAPPING IN Si(Li) DETECTORS AT LOW TEMPERATURES , 1969 .

[19]  Peter J. Warter,et al.  Field-Controlled Photogeneration and Free-Carrier Transport in Amorphous Selenium Films , 1968 .

[20]  M. Nicolet,et al.  Drift Velocity of Electrons in Silicon at High Electric Fields from 4.2° to 300°K , 1969 .

[21]  Melvin Lax,et al.  Cascade Capture of Electrons in Solids , 1960 .

[22]  A. A. Quaranta,et al.  On a new method for measuring the charge carriers drift mobility in high resistivity silicon , 1965 .

[23]  T. Sigmon,et al.  Electric field profile and electron drift velocities in lithium drifted silicon , 1969 .

[24]  E. Sakai,et al.  Performance of Ge(Li) Detectors in the Temperature Range 5.0 to 170°K , 1967 .