The Evolution of Markov Chain Monte Carlo Methods

(2010). The Evolution of Markov Chain Monte Carlo Methods. The American Mathematical Monthly: Vol. 117, No. 5, pp. 383-413.

[1]  Michael Creutz,et al.  Confinement and the critical dimensionality of space-time , 1979 .

[2]  N. Nahi,et al.  Bayesian recursive image estimation. , 1972 .

[3]  鈴木 増雄 Time-Dependent Statistics of the Ising Model , 1965 .

[4]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[5]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[6]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[7]  Brian Albright,et al.  An Introduction to Simulated Annealing , 2007 .

[8]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[9]  David B. Hitchcock,et al.  A History of the Metropolis–Hastings Algorithm , 2003 .

[10]  Persi Diaconis,et al.  The Markov chain Monte Carlo revolution , 2008 .

[11]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[12]  A. Barker Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .

[13]  S. Brush History of the Lenz-Ising Model , 1967 .

[14]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[15]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[16]  J. E. Gubernatisb Marshall Rosenbluth and the Metropolis algorithm a ... , 2005 .

[17]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[18]  Persi Diaconis,et al.  What do we know about the Metropolis algorithm? , 1995, STOC '95.

[19]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[20]  N. Metropolis THE BEGINNING of the MONTE CARLO METHOD , 2022 .

[21]  D. Balmer Theoretical and Computational Aspects of Simulated Annealing , 1991 .

[22]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[23]  S. Ulam,et al.  Adventures of a Mathematician , 2019, Mathematics: People · Problems · Results.

[24]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[25]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[26]  D. Gaver,et al.  Robust empirical bayes analyses of event rates , 1987 .

[27]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[29]  P. Flinn Monte Carlo calculation of phase separation in a two-dimensional Ising system , 1974 .

[30]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[31]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[32]  Jack J. Dongarra,et al.  Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..

[33]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[34]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[35]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[36]  E. Segre Fermi and Neutron Physics , 1955 .

[37]  B. Cipra An introduction to the Ising model , 1987 .

[38]  G. Casella,et al.  A History of Markov Chain Monte Carlo–Subjective Recollections from Incomplete Data– , 2008 .

[39]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[40]  W. Marsden I and J , 2012 .

[41]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[42]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[43]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[44]  N. Metropolis,et al.  Calculations in the Liquid-Drop Model of Fission , 1947 .

[45]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[46]  Baron Kelvin William Thomson Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light: NINETEENTH CENTURY CLOUDS OVER THE DYNAMICAL THEORY OF HEAT AND LIGHT , 1901 .

[47]  A. Habibi Two-dimensional Bayesian estimate of images , 1972 .

[48]  P. L. Dobruschin The Description of a Random Field by Means of Conditional Probabilities and Conditions of Its Regularity , 1968 .

[49]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[50]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[51]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[52]  Bobby R. Hunt,et al.  Bayesian Methods in Nonlinear Digital Image Restoration , 1977, IEEE Transactions on Computers.

[53]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[54]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  J. Gubernatis Marshall Rosenbluth and the Metropolis algorithma) , 2005 .

[56]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[57]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[58]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[59]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[60]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[61]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .