The Evolution of Markov Chain Monte Carlo Methods
暂无分享,去创建一个
[1] Michael Creutz,et al. Confinement and the critical dimensionality of space-time , 1979 .
[2] N. Nahi,et al. Bayesian recursive image estimation. , 1972 .
[3] 鈴木 増雄. Time-Dependent Statistics of the Ising Model , 1965 .
[4] Bradley P. Carlin,et al. Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .
[5] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[6] Wang,et al. Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.
[7] Brian Albright,et al. An Introduction to Simulated Annealing , 2007 .
[8] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[9] David B. Hitchcock,et al. A History of the Metropolis–Hastings Algorithm , 2003 .
[10] Persi Diaconis,et al. The Markov chain Monte Carlo revolution , 2008 .
[11] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[12] A. Barker. Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .
[13] S. Brush. History of the Lenz-Ising Model , 1967 .
[14] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[15] J. Besag. On the Statistical Analysis of Dirty Pictures , 1986 .
[16] J. E. Gubernatisb. Marshall Rosenbluth and the Metropolis algorithm a ... , 2005 .
[17] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[18] Persi Diaconis,et al. What do we know about the Metropolis algorithm? , 1995, STOC '95.
[19] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[20] N. Metropolis. THE BEGINNING of the MONTE CARLO METHOD , 2022 .
[21] D. Balmer. Theoretical and Computational Aspects of Simulated Annealing , 1991 .
[22] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[23] S. Ulam,et al. Adventures of a Mathematician , 2019, Mathematics: People · Problems · Results.
[24] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[25] A. Rollett,et al. The Monte Carlo Method , 2004 .
[26] D. Gaver,et al. Robust empirical bayes analyses of event rates , 1987 .
[27] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[28] Adrian F. M. Smith,et al. Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .
[29] P. Flinn. Monte Carlo calculation of phase separation in a two-dimensional Ising system , 1974 .
[30] J. Rosenthal. Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .
[31] S. Dreyfus,et al. Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .
[32] Jack J. Dongarra,et al. Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..
[33] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[34] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[35] Cecilia R. Aragon,et al. Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..
[36] E. Segre. Fermi and Neutron Physics , 1955 .
[37] B. Cipra. An introduction to the Ising model , 1987 .
[38] G. Casella,et al. A History of Markov Chain Monte Carlo–Subjective Recollections from Incomplete Data– , 2008 .
[39] Alan E. Gelfand,et al. Bayesian statistics without tears: A sampling-resampling perspective , 1992 .
[40] W. Marsden. I and J , 2012 .
[41] J. Laurie Snell,et al. Markov Random Fields and Their Applications , 1980 .
[42] V. Cerný. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .
[43] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[44] N. Metropolis,et al. Calculations in the Liquid-Drop Model of Fission , 1947 .
[45] Eric Vigoda,et al. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.
[46] Baron Kelvin William Thomson. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light: NINETEENTH CENTURY CLOUDS OVER THE DYNAMICAL THEORY OF HEAT AND LIGHT , 1901 .
[47] A. Habibi. Two-dimensional Bayesian estimate of images , 1972 .
[48] P. L. Dobruschin. The Description of a Random Field by Means of Conditional Probabilities and Conditions of Its Regularity , 1968 .
[49] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[50] Emile H. L. Aarts,et al. Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.
[51] Bradley P. Carlin,et al. BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..
[52] Bobby R. Hunt,et al. Bayesian Methods in Nonlinear Digital Image Restoration , 1977, IEEE Transactions on Computers.
[53] Mark Jerrum,et al. Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..
[54] Anil K. Jain,et al. Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[55] J. Gubernatis. Marshall Rosenbluth and the Metropolis algorithma) , 2005 .
[56] William H. Richardson,et al. Bayesian-Based Iterative Method of Image Restoration , 1972 .
[57] Dorit S. Hochba,et al. Approximation Algorithms for NP-Hard Problems , 1997, SIGA.
[58] G. Casella,et al. Explaining the Gibbs Sampler , 1992 .
[59] Cecilia R. Aragon,et al. Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..
[60] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[61] S. E. Hills,et al. Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .