Parallel in-memory wireless computing

[1]  Meilin Liu,et al.  A computing-in-memory macro based on three-dimensional resistive random-access memory , 2022, Nature Electronics.

[2]  W. Lu,et al.  Memristive technologies for data storage, computation, encryption, and radio-frequency communication , 2022, Science.

[3]  D. Akinwande,et al.  Monolayer molybdenum disulfide switches for 6G communication systems , 2022, Nature Electronics.

[4]  Yuchao Yang,et al.  Memristive devices based hardware for unlabeled data processing , 2022, Neuromorph. Comput. Eng..

[5]  G. Kyriacou Oxide electronics for 5G and 6G , 2021, Nature Electronics.

[6]  H. Vincent Poor,et al.  Revisiting Analog Over-the-Air Machine Learning: The Blessing and Curse of Interference , 2021, IEEE Journal of Selected Topics in Signal Processing.

[7]  F. Miao,et al.  Scalable massively parallel computing using continuous-time data representation in nanoscale crossbar array , 2021, Nature Nanotechnology.

[8]  Peter C. Ma,et al.  Ten Lessons From Three Generations Shaped Google’s TPUv4i : Industrial Product , 2021, 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA).

[9]  Ronny Krashinsky,et al.  NVIDIA A100 Tensor Core GPU: Performance and Innovation , 2021, IEEE Micro.

[10]  Raymond Beausoleil,et al.  Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks , 2020, Nature Electronics.

[11]  Bin Gao,et al.  Alloying conducting channels for reliable neuromorphic computing , 2020, Nature Nanotechnology.

[12]  Jack C. Lee,et al.  Analogue switches made from boron nitride monolayers for application in 5G and terahertz communication systems , 2020 .

[13]  Shuangfeng Han,et al.  Energy-efficient 5G for a greener future , 2020 .

[14]  Mark Barnell,et al.  Three-dimensional memristor circuits as complex neural networks , 2020, Nature Electronics.

[15]  Weichuan Huang,et al.  Sub-nanosecond memristor based on ferroelectric tunnel junction , 2020, Nature Communications.

[16]  Sundeep Rangan,et al.  Power Consumption Analysis for Mobile MmWave and Sub-THz Receivers , 2020, 2020 2nd 6G Wireless Summit (6G SUMMIT).

[17]  Jack D. Kendall,et al.  The building blocks of a brain-inspired computer , 2020 .

[18]  Kang L. Wang,et al.  Resistive switching materials for information processing , 2020, Nature Reviews Materials.

[19]  Daniele Ielmini,et al.  One-step regression and classification with cross-point resistive memory arrays , 2020, Science Advances.

[20]  Bin Gao,et al.  Fully hardware-implemented memristor convolutional neural network , 2020, Nature.

[21]  Vida Ilderem,et al.  The technology underpinning 5G , 2020, Nature Electronics.

[22]  Meng-Fan Chang,et al.  CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors , 2019, Nature Electronics.

[23]  Zhengya Zhang,et al.  A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations , 2019, Nature Electronics.

[24]  B. Shihada,et al.  What should 6G be? , 2019, Nature Electronics.

[25]  J. Yang,et al.  Memristive crossbar arrays for brain-inspired computing , 2019, Nature Materials.

[26]  Daniele Ielmini,et al.  Solving matrix equations in one step with cross-point resistive arrays , 2019, Proceedings of the National Academy of Sciences.

[27]  Capcom Edge Take it to the edge , 2019, Nature Electronics.

[28]  Markku J. Juntti,et al.  RF-chain ADC Resolution Trade-off in MIMO Hybrid Architecture , 2018, 2018 52nd Asilomar Conference on Signals, Systems, and Computers.

[29]  Jianguo Huang,et al.  Underwater acoustic communication and the general performance evaluation criteria , 2018, Frontiers of Information Technology & Electronic Engineering.

[30]  Leon O. Chua,et al.  Neuromemristive Circuits for Edge Computing: A Review , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[31]  Bing Chen,et al.  A general memristor-based partial differential equation solver , 2018, Nature Electronics.

[32]  H.-S. Philip Wong,et al.  In-memory computing with resistive switching devices , 2018, Nature Electronics.

[33]  Catherine E. Graves,et al.  Memristor‐Based Analog Computation and Neural Network Classification with a Dot Product Engine , 2018, Advanced materials.

[34]  Damien Querlioz,et al.  Neuromorphic computing with nanoscale spintronic oscillators , 2017, Nature.

[35]  Boris Murmann,et al.  The Race for the Extra Decibel: A Brief Review of Current ADC Performance Trajectories , 2015, IEEE Solid-State Circuits Magazine.

[36]  Lajos Hanzo,et al.  Fifty Years of MIMO Detection: The Road to Large-Scale MIMOs , 2015, IEEE Communications Surveys & Tutorials.

[37]  Qiangfei Xia,et al.  Nanoscale memristive radiofrequency switches , 2015, Nature Communications.

[38]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[39]  Boris Murmann,et al.  Energy limits in A/D converters , 2013, 2013 IEEE Faible Tension Faible Consommation.

[40]  Harald Haas,et al.  Indoor optical wireless communication: potential and state-of-the-art , 2011, IEEE Communications Magazine.

[41]  Sanu Mathew,et al.  A 320mV-to-1.2V on-die fine-grained reconfigurable fabric for DSP/media accelerators in 32nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[42]  John M. Cioffi,et al.  Spatio-temporal coding for wireless communication , 1998, IEEE Trans. Commun..

[43]  Wei Lu,et al.  The future of electronics based on memristive systems , 2018, Nature Electronics.