Short pulse generation using multisegment mode-locked semiconductor lasers

Mode-locked semiconductor lasers which incorporate multiple contacting segments are found to give improved performance over single-segment designs. The functions of gain, saturable absorption, gain modulation, repetition rate tuning, wavelength tuning, and electrical pulse generation can be integrated on a single semiconductor chip. The optimization of the performance of mode-locked lasers in terms of material parameters, waveguiding parameters, electrical parasitics, and segment length is discussed experimentally and theoretically. >

[1]  John E. Bowers,et al.  Comparison of timing jitter in external and monolithic cavity mode‐locked semiconductor lasers , 1991 .

[2]  Niloy K. Dutta,et al.  Long wavelength semiconductor lasers , 1988, Technical Digest., International Electron Devices Meeting.

[3]  Peter A. Andrekson,et al.  16 Gbit/s all-optical demultiplexing using four-wave mixing , 1991 .

[4]  J. Paslaski,et al.  Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor lasers , 1991, IEEE Photonics Technology Letters.

[5]  J. Bowers,et al.  Field-Enhanced GaAs/AlGaAs Waveguide Saturable Absorbers , 1992, Eighth International Conference on Ultrafast Phenomena.

[6]  U. Koren,et al.  5.5-mm long InGaAsP monolithic extended-cavity laser with an integrated Bragg-reflector for active mode-locking , 1992, IEEE Photonics Technology Letters.

[7]  J. Bowers,et al.  Microwave and millimeter wave signal generation using mode-locked semiconductor lasers with intra-waveguide saturable absorbers , 1992, 1992 IEEE Microwave Symposium Digest MTT-S.

[8]  J. Bowers,et al.  Suppression of multiple pulse formation in external-cavity mode-locked semiconductor lasers using intrawaveguide saturable absorbers , 1992, IEEE Photonics Technology Letters.

[9]  G. Agrawal Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers , 1991 .

[10]  G. Guekos,et al.  Stable optical picosecond pulses from actively mode-locked twin-section diode lasers , 1988 .

[11]  Thomas L. Paoli,et al.  Monolithic waveguide coupled cavity lasers and modulators fabricated by impurity induced disordering , 1988 .

[12]  H. Haus Theory of mode locking with a slow saturable absorber , 1975 .

[13]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[14]  J. Bowers,et al.  Mode‐locked GaAs vertical cavity surface emitting lasers , 1992 .

[15]  J. Herrmann,et al.  Theory of passive mode-locking of CW dye lasers with contacted and non-contacted absorbers , 1981 .

[16]  Gadi Eisenstein,et al.  Timing jitter in mode‐locked and gain‐switched InGaAsP injection lasers , 1986 .

[17]  W. Dietel Transient absorber gratings shorten the pulses of a passively mode-locked cw dye laser , 1982 .

[18]  John E. Bowers,et al.  Comparison of colliding pulse and self-colliding pulse monolithic cavity mode-locked semiconductor lasers , 1992 .

[19]  D. Bimberg,et al.  Fundamental limits of sub-ps pulse generation by active mode locking of semiconductor lasers: the spectral gain width and the facet reflectivities , 1991 .

[20]  D. Kühlke,et al.  Influence of transient absorber gratings on the pulse parameters of passively mode‐locked cw dye ring lasers , 1983 .

[21]  Arthur J. Lowery,et al.  New time-domain model for active mode locking, based on the transmission line laser model , 1989 .

[22]  R. Logan,et al.  Subpicosecond pulses from passively mode‐locked GaAs buried optical guide semiconductor lasers , 1981 .

[23]  J. Bowers,et al.  Partial-integration method for analysis of mode-locked semiconductor lasers. , 1990, Optics letters.

[24]  John E. Bowers,et al.  Relative and absolute timing jitter in actively mode-locked semiconductor lasers , 1990 .

[25]  R. C. Williamson,et al.  Wide-band electrooptic guided-wave analog-to-digital converters , 1984, Proceedings of the IEEE.

[26]  J. M. Wisenfeld Electro-optic sampling of high-speed devices and integrated circuits , 1990 .

[27]  Chang-Hee Lee,et al.  Limits on amplification of picosecond pulses by using semiconductor laser traveling-wave amplifiers , 1991 .

[28]  J. Kuhl,et al.  Bandwidth-limited picosecond pulse generation in an actively mode-locked GaAs laser with intracavity chirp compensation. , 1987, Optics letters.

[29]  S. Corzine,et al.  Actively mode-locked semiconductor lasers , 1989 .

[30]  Gadi Eisenstein,et al.  Optical time-division multiplexing for very high bit-rate transmission , 1988 .

[31]  T. Tanbun-ek,et al.  Strained InGaAs/InP quantum well lasers , 1990 .

[32]  Kam Y. Lau,et al.  Passive mode locking of buried heterostructure lasers with nonuniform current injection , 1983 .

[33]  N. Olsson,et al.  Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers , 1989 .

[34]  A. M. Sergent,et al.  Hybrid soliton pulse source using a silica waveguide external cavity and Bragg reflector , 1991 .

[35]  David A. B. Miller,et al.  Mode locking of semiconductor diode lasers using saturable excitonic nonlinearities , 1985 .

[36]  J. Wiesenfeld,et al.  Compression of picosecond pulses from diode lasers using a modified grating-pair compressor. , 1990, Optics letters.

[37]  Tawee Tanbun-Ek,et al.  Subpicosecond monolithic colliding‐pulse mode‐locked multiple quantum well lasers , 1991 .

[38]  Erich P. Ippen,et al.  Pulse shaping in passively mode-locked ring dye lasers , 1983 .

[39]  S. Nishi,et al.  Adiabatic soliton compression of gain-switched DFB-LD pulse by distributed fiber Raman amplification , 1991, IEEE Photonics Technology Letters.