Cell membrane localization of sterols with conventional and unusual side chains in two marine demonsponges

[1]  C. Djerassi,et al.  Cell membrane localization of long chain C24−C30 fatty acids in two marine demosponges , 1988, Lipids.

[2]  C. Djerassi,et al.  Phospholipid studies of marine organisms: V1 new α-methoxy acids fromHigginsia tethyoides , 1983, Lipids.

[3]  C. Djerassi,et al.  Phospholipid studies of marine organisms: III. New phospholipid fatty acids fromPetrosia ficiformis , 1982, Lipids.

[4]  C. Djerassi,et al.  Phospholpid studies of marine organisms: 2.1 Phospholipids, phospholipid-bound fatty acids and free sterols of the spongeAplysina fistularis (Pallas) formafulva (Pallas) (=Verongia thiona)2. Isolation and structure elucidation of unprecedented branched fatty acids , 1981, Lipids.

[5]  W. Nes Role of sterols in membranes , 1974, Lipids.

[6]  C. Wilkinson,et al.  Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges , 1981, Microbial Ecology.

[7]  M. Rosa,et al.  Metabolism in porifera IV. Biosynthesis of the 3β-Hydroxymethyl-A-nor-5α-Steranes from cholesterol byAxinella verrucosa , 1975, Experientia.

[8]  C. Djerassi,et al.  Biosynthetic studies of marine lipids. 9. Stereochemical aspects and hydrogen migrations in the biosynthesis of the triply alkylated side chain of the sponge sterol strongylosterol , 1986 .

[9]  N. Düzgüneş,et al.  Biophysical properties of unusual phospholipids and sterols from marine invertebrates. , 1986, Biochimica et biophysica acta.

[10]  K. Tomer,et al.  Mass spectral behavior and HPLC of some unusual molecular phospholipid species. , 1986, Chemistry and physics of lipids.

[11]  C. Djerassi,et al.  Biosynthetic studies of marine lipids 8 : Course of the stereoselective alkylation and regioselective hydrogen migration in the biosynthesis of the sponge sterol 24(s)-24 isopropenylcholesterol , 1986 .

[12]  C. Djerassi,et al.  Biosynthetic studes of marine lipids 7 , 1986 .

[13]  M. P. Lawson,et al.  The cellular localization of long chain fatty acids in sponges. , 1986, Tissue & cell.

[14]  C. Djerassi,et al.  Minor and trace sterols in marine invertebrates 53: Further novel marine sterols resulting from triple and quadruple biomethylation of the cholesterol side-chain , 1985, Steroids.

[15]  C. Djerassi,et al.  Minor and trace sterols in marine invertebrates 52. isolation, structure elucidation and partial synthesis of 24-propyl-24,28-methylenecholest-5-en-3β-ol , 1985 .

[16]  C. Djerassi,et al.  Biosynthetic studies of marine lipids—3 : Experimental demonstration of the course of side chain extension in marine sterols , 1985 .

[17]  N. F. Hadley The adaptive role of lipids in biological systems , 1985 .

[18]  C. Djerassi,et al.  Biosynthetic studies of marine lipids 12.: Biosynthesis in marine sponges of sterois possessing the δ5,7-nucleus typical of fungi and the 24-alkyl side chain characteristic of plants , 1985 .

[19]  N. Ikekawa Chapter 8 Structures, biosynthesis and function of sterols in invertebrates , 1985 .

[20]  J. Sjövall,et al.  Sterols and bile acids , 1985 .

[21]  G. Cordell Natural products and drug development: P. Krogsgaard-Larsen, S. Brøgger Christensen and Helmer Kofod (Eds.), Munksgaard, Copenhagen, 1984. 559 pp. (D.kr. 375.00) , 1984 .

[22]  Povl Krogsgaard-Larsen,et al.  Natural products and drug development : proceedings of the Alfred Benzon Symposium 20 held at the premises of the Royal Danish Academy of Sciences and Letters, Copenhagen 7-11 August 1983 , 1984 .

[23]  Y. Lange,et al.  Analysis of the distribution of cholesterol in the intact cell. , 1983, The Journal of biological chemistry.

[24]  C. Djerassi,et al.  Minor and trace sterols in marine invertebrates 40. Structure and synthesis of axinyssasterol, 25-methylfucosterol and 24-ethyl-24-methylcholesterol -- novel sponge sterols with highly branched side chains , 1983 .

[25]  C. Djerassi Recent studies in the marine sterol field , 1981 .

[26]  K. Bloch,et al.  Sterol structure and membrane function. , 1981, Current topics in cellular regulation.

[27]  W. Hofheinz,et al.  Sterol composition and the classification of the demospongiae , 1980 .

[28]  C. Djerassi,et al.  BIOLOGICAL IMPLICATIONS OF RECENT DISCOVERIES IN THE MARINE STEROL FIELD , 1980 .

[29]  S. Rottem,et al.  Carotenoids acts as reinforcers of the Acholeplasma laidlawii lipid bilayer , 1979, Journal of bacteriology.

[30]  W. Hofheinz,et al.  24‐Isopropylcholesterol and 22‐Dehydro‐24‐isopropylcholesterol, Novel Sterols from a Sponge , 1979 .

[31]  C. Djerassi,et al.  Minor and Trace Sterols in Marine Invertebrates. XII. Occurrence of 24 (R + S)‐isopropenylcholesterol, 24 (R + S)‐methylcholesta‐5, 25‐dien‐3β‐ol, and 24 (R + S)‐methylcholesta‐7, 25‐dien‐3β‐ol in the caribbean sponge, Verongia cauliformis , 1979 .

[32]  J. Thompson,et al.  Influence of plant sterols on the phase properties of phospholipid bilayers. , 1979, Plant physiology.

[33]  G. Ourisson,et al.  Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[34]  C. Djerassi,et al.  Recent progress in the marine sterol field , 1979 .

[35]  L. Minale Natural Product Chemistry of the Marine Sponges , 1977 .

[36]  B. de Kruyff,et al.  The function of sterols in membranes. , 1976, Biochimica et biophysica acta.

[37]  J. Rothman,et al.  Molecular mechanism for the interaction of phospholipid with cholesterol. , 1972, Nature: New biology.

[38]  P. Germain,et al.  Mortality of Thick-billed Murres in the West Greenland Salmon Fishery , 1972, Nature.

[39]  Y. Nozawa,et al.  Environmentally produced alterations of the tetrahymanol: phospholipid ratio in Tetrahymena pyriformis membranes. , 1972, Biochimica et biophysica acta.

[40]  A. Kleinzeller,et al.  Current Topics in Membranes and Transport , 1970 .

[41]  D. Taylor-Robinson The biology of mycoplasmas. , 1968, Journal of clinical pathology. Supplement.