Heat stress on breeding value prediction for milk yield and composition of a Brazilian Holstein cattle population

[1]  P. Toro-Mujica,et al.  Diversity in smallholder dairy production systems in the Brazilian semiarid region: Farm typologies and characteristics of raw milk and water used in milking , 2022, Journal of Arid Environments.

[2]  Roberto Kappes,et al.  Rumination time, activity index, and productive performance of Holstein and crossbred Holstein × jersey cows exposed to different temperature-humidity indexes , 2022, International Journal of Biometeorology.

[3]  I. Misztal,et al.  Changes in genetic parameters for milk yield and heat tolerance in the Thai Holstein crossbred dairy population under different heat stress levels and over time. , 2021, Journal of dairy science.

[4]  P. Thornton,et al.  Increases in extreme heat stress in domesticated livestock species during the twenty‐first century , 2021, Global change biology.

[5]  D. Façanha,et al.  Evaluation of homeothermy, acid-base and electrolytic balance of black goats and ewes in an equatorial semi-arid environment. , 2021, Journal of thermal biology.

[6]  N. Reinsch,et al.  Modeling heat stress effects on dairy cattle milk production in a tropical environment using test-day records and random regression models. , 2021, Animal : an international journal of animal bioscience.

[7]  G. B. Mourão,et al.  Genetic parameters for milk yield and quality traits of Brazilian Holstein cows as a function of temperature and humidity index. , 2021, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[8]  G. Thompson,et al.  Genotype by environment interaction for Holstein cattle populations using autoregressive and within- and across-country multi-trait reaction norms test-day models. , 2021, Animal : an international journal of animal bioscience.

[9]  M. Busanello,et al.  Relationship between thermal environment and morphophysiological, performance and carcass traits of Brahman bulls raised on tropical pasture: A canonical approach to a set of indicators. , 2020, Journal of thermal biology.

[10]  D. Façanha,et al.  Development of an animal adaptability index: Application for dairy cows. , 2020, Journal of thermal biology.

[11]  R. Silveira,et al.  Simultaneity between nutrition and thermoregulatory responses in ruminants , 2019, Biological Rhythm Research.

[12]  M. Busanello,et al.  Relationship between climatic variables and the variation in bulk tank milk composition using canonical correlation analysis , 2018, International Journal of Biometeorology.

[13]  A. Kohler,et al.  Unravelling genetic variation underlying de novo-synthesis of bovine milk fatty acids , 2018, Scientific Reports.

[14]  G. B. Mourão,et al.  Genetic parameters for milk fatty acids, milk yield and quality traits of a Holstein cattle population reared under tropical conditions. , 2016, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[15]  S. Munilla,et al.  Polynomial order selection in random regression models via penalizing adaptively the likelihood. , 2015, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[16]  P. F. Machado,et al.  Reaction norm model to describe environmental sensitivity across first lactation in dairy cattle under tropical conditions , 2015, Tropical Animal Health and Production.

[17]  F. Tiezzi,et al.  Genetics of milk fatty acid groups predicted during routine data recording in Holstein dairy cattle , 2015 .

[18]  D. Moran,et al.  Genetic resources and genomics for adaptation of livestock to climate change , 2014, Front. Genet..

[19]  K. Bachagha,et al.  Modeling heat stress effect on Holstein cows under hot and dry conditions: selection tools. , 2014, Journal of dairy science.

[20]  F. Baldi,et al.  Multiple-trait random regression models for the estimation of genetic parameters for milk, fat, and protein yield in buffaloes. , 2013, Journal of dairy science.

[21]  Nicolas Gengler,et al.  Genetic parameters of milk production traits and fatty acid contents in milk for Holstein cows in parity 1-3. , 2013, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[22]  S. König,et al.  Genetic analyses of protein yield in dairy cows applying random regression models with time-dependent and temperature x humidity-dependent covariates. , 2011, Journal of dairy science.

[23]  H. Soyeurt,et al.  Phenotypic and genetic variability of production traits and milk fatty acid contents across days in milk for Walloon Holstein first-parity cows. , 2011, Journal of dairy science.

[24]  D. Boichard,et al.  Genetic Parameter Estimation for Milk Fatty Acids in Three French Dairy Cattle Breeds , 2011 .

[25]  S. Brotherstone,et al.  Genotype by environment interaction for first-lactation female fertility traits in UK dairy cattle. , 2009, Journal of dairy science.

[26]  H. Soyeurt,et al.  Genotype x environment interaction for milk yield in Holsteins using Luxembourg and Tunisian populations. , 2008, Journal of dairy science.

[27]  H Soyeurt,et al.  Genetic parameters of saturated and monounsaturated fatty acid content and the ratio of saturated to unsaturated fatty acids in bovine milk. , 2008, Journal of dairy science.

[28]  D. Beitz,et al.  Short communication: estimates of genetic variation of milk fatty acids in US Holstein cows. , 2008, Journal of dairy science.

[29]  H. Norman,et al.  Short communication: genotype by environment interaction due to heat stress. , 2008, Journal of dairy science.

[30]  H Soyeurt,et al.  Estimation of heritability and genetic correlations for the major fatty acids in bovine milk. , 2007, Journal of dairy science.

[31]  Karin Meyer,et al.  "WOMBAT" - DIGGING DEEP FOR QUANTITATIVE GENETIC ANALYSES BY RESTRICTED MAXIMUM LIKELIHOOD , 2006 .

[32]  D. Boichard,et al.  Modeling lactation curves and estimation of genetic parameters for first lactation test-day records of French Holstein cows. , 2003, Journal of dairy science.

[33]  E. Maltz,et al.  Heat stress in lactating dairy cows: a review , 2002 .

[34]  J. Jensen,et al.  Genotype by Environment Interaction in Nordic Dairy Cattle Studied Using Reaction Norms , 2002 .

[35]  K. Meyer Estimating covariance functions for longitudinal data using a random regression model , 1998, Genetics Selection Evolution.

[36]  W. J. A. Payne,et al.  Tropical Cattle: Origins, Breeds and Breeding Policies , 1997 .

[37]  J. Jamrozik,et al.  Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation Holsteins. , 1997, Journal of dairy science.

[38]  G. Banos,et al.  SELECTING BULLS ACROSS COUNTRIES TO MAXIMIZE GENETIC-IMPROVEMENT IN DAIRY-CATTLE , 1991 .

[39]  H. C. Rowsell,et al.  A Guide to Environmental Research on Animals , 1972 .

[40]  B. Prasanna,et al.  Heat Stress , 2019, Patty's Industrial Hygiene.